A Piecewise Interpolation Method Based on Log-Least Square Error Criterion for HRTF

Author(s):  
Jie Zhang ◽  
Zhenyang Wu
Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3586 ◽  
Author(s):  
Sizhou Sun ◽  
Jingqi Fu ◽  
Ang Li

Given the large-scale exploitation and utilization of wind power, the problems caused by the high stochastic and random characteristics of wind speed make researchers develop more reliable and precise wind power forecasting (WPF) models. To obtain better predicting accuracy, this study proposes a novel compound WPF strategy by optimal integration of four base forecasting engines. In the forecasting process, density-based spatial clustering of applications with noise (DBSCAN) is firstly employed to identify meaningful information and discard the abnormal wind power data. To eliminate the adverse influence of the missing data on the forecasting accuracy, Lagrange interpolation method is developed to get the corrected values of the missing points. Then, the two-stage decomposition (TSD) method including ensemble empirical mode decomposition (EEMD) and wavelet transform (WT) is utilized to preprocess the wind power data. In the decomposition process, the empirical wind power data are disassembled into different intrinsic mode functions (IMFs) and one residual (Res) by EEMD, and the highest frequent time series IMF1 is further broken into different components by WT. After determination of the input matrix by a partial autocorrelation function (PACF) and normalization into [0, 1], these decomposed components are used as the input variables of all the base forecasting engines, including least square support vector machine (LSSVM), wavelet neural networks (WNN), extreme learning machine (ELM) and autoregressive integrated moving average (ARIMA), to make the multistep WPF. To avoid local optima and improve the forecasting performance, the parameters in LSSVM, ELM, and WNN are tuned by backtracking search algorithm (BSA). On this basis, BSA algorithm is also employed to optimize the weighted coefficients of the individual forecasting results that produced by the four base forecasting engines to generate an ensemble of the forecasts. In the end, case studies for a certain wind farm in China are carried out to assess the proposed forecasting strategy.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuhui Wu ◽  
Xinzhi Zhou ◽  
Li Zhao ◽  
Chenlong Dong ◽  
Hailin Wang

Acoustic tomography (AT), as a noninvasive temperature measurement method, can achieve temperature field measurement in harsh environments. In order to achieve the measurement of the temperature distribution in the furnace and improve the accuracy of AT reconstruction, a temperature field reconstruction algorithm based on the radial basis function (RBF) interpolation method optimized by the evaluation function (EF-RBFI for short) is proposed. Based on a small amount of temperature data obtained by the least square method (LSM), the RBF is used for interpolation. And, the functional relationship between the parameter of RBF and the root-mean-square (RMS) error of the reconstruction results is established in this paper, which serves as the objective function for the effect evaluation, so as to determine the optimal parameter of RBF. The detailed temperature description of the entire measured temperature field is finally established. Through the reconstruction of three different types of temperature fields provided by Dongfang Boiler Works, the results and error analysis show that the EF-RBFI algorithm can describe the temperature distribution information of the measured combustion area globally and is able to reconstruct the temperature field with high precision.


2018 ◽  
Vol 2 (1) ◽  
pp. 108-116 ◽  
Author(s):  
Sari Virgawati ◽  
Muhjidin Mawardi ◽  
Lilik Sutiarso ◽  
Sakae Shibusawa ◽  
Hendrik Segah ◽  
...  

Soil texture is one of the soil properties influencing most physical, chemical, and biological soil processes.  Information on soil texture is important to support the agronomic decisions for farm management. The problem is how to provide reliable, fast and inexpensive information of soil texture in numerous soil samples and repeated measurement. The objective of this research was to generate the soil texture map based on laboratory Vis-NIR (Visible - Near Infra-Red) spectroscopy and inverse distance weighted (IDW) interpolation method. An ASD Fieldspec 3 with a spectral range from 350 nm to 2500 nm was used to measure the soil reflectance. Pipette method was used to measure the silt, clay and sand fractions. The partial least square regression (PLSR) was performed to establish the prediction model of soil texture. The predicted values were mapped and showing the information of spatial and temporal variability of soil texture. Keywords: Vis-NIR, spectroscopy, soil texture, PLSR, IDW


2017 ◽  
Vol 17 (10) ◽  
pp. 1741-1761 ◽  
Author(s):  
Giorgia Verri ◽  
Nadia Pinardi ◽  
David Gochis ◽  
Joseph Tribbia ◽  
Antonio Navarra ◽  
...  

Abstract. A meteo-hydrological modelling system has been designed for the reconstruction of long time series of rainfall and river runoff events. The modelling chain consists of the mesoscale meteorological model of the Weather Research and Forecasting (WRF), the land surface model NOAH-MP and the hydrology–hydraulics model WRF-Hydro. Two 3-month periods are reconstructed for winter 2011 and autumn 2013, containing heavy rainfall and river flooding events. Several sensitivity tests were performed along with an assessment of which tunable parameters, numerical choices and forcing data most impacted on the modelling performance.The calibration of the experiments highlighted that the infiltration and aquifer coefficients should be considered as seasonally dependent.The WRF precipitation was validated by a comparison with rain gauges in the Ofanto basin. The WRF model was demonstrated to be sensitive to the initialization time and a spin-up of about 1.5 days was needed before the start of the major rainfall events in order to improve the accuracy of the reconstruction. However, this was not sufficient and an optimal interpolation method was developed to correct the precipitation simulation. It is based on an objective analysis (OA) and a least square (LS) melding scheme, collectively named OA+LS. We demonstrated that the OA+LS method is a powerful tool to reduce the precipitation uncertainties and produce a lower error precipitation reconstruction that itself generates a better river discharge time series. The validation of the river streamflow showed promising statistical indices.The final set-up of our meteo-hydrological modelling system was able to realistically reconstruct the local rainfall and the Ofanto hydrograph.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
L. Y. Yao ◽  
J. W. Zhou ◽  
Z. Zhou ◽  
L. Li

The shape function of the finite element-least square point interpolation method (FE-LSPIM) combines the quadrilateral element for partition of unity and the least square point interpolation method (LSPIM) for local approximation, and inherits the completeness properties of meshfree shape functions and the compatibility properties of FE shape functions, and greatly reduces the numerical dispersion error. This paper derives the formulas and performs the dispersion analysis for the FE-LSPIM. Numerical results for benchmark problems show that, the FE-LSPIM yields considerably better results than the finite element method (FEM) and element-free Galerkin method (EFGM).


Sign in / Sign up

Export Citation Format

Share Document