Kinematics and Dynamics Modelling of a Mecanum Wheeled Mobile Platform

Author(s):  
Nkgatho Tlale ◽  
Mark de Villiers
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Hong Jun Li ◽  
Wei Jiang ◽  
Yu Yan ◽  
An Zhang ◽  
Gan Zuo

In response to the problems of high labor intensity, high risk, and poor reliability of artificial live working, a four-wheel-driven spacer bar replacement mobile operation robot has been designed and developed in this paper, and the corresponding kinematic and dynamics model have been established, based on the established double models, the kinematics and dynamics numerical analysis can be realized through INVENTOR and ADAMS, respectively, based on the established kinematics and dynamics models . The results show that the simulation value of the robot joint displacement, velocity, acceleration, and joint force can be able to meet the requirements of kinematic and dynamic constraints during the robot operation. The robot prototype can meet the requirement of dual-split robot working space and the operation joint force control, which not only extend the robot adaptability to the multisplit lines heterogeneous operation environment but also provide an important theoretical technical support for the exploit of the robot physical prototype. Through the robot kinematics and dynamics analysis, the robot mechanical structure parameters and electrical control parameters have been effectively optimized. The weight and cost of the robot have been reduced by 12% and 15% compared to the existed studies. Finally, the robot principle prototype mobile platform has been developed, and the correctness of robot kinematics and dynamics simulation analysis has been verified through the robot principle prototype mobile platform.


Author(s):  
Maryam Agahi ◽  
Leila Notash

In the work presented, the optimal trajectory planning in wire-actuated parallel manipulators in the presence of an obstacle is investigated. The kinematics and dynamics of a wire-actuated parallel manipulator considering the elasticity and damping effects of wires are described. The redundancy resolution of planar wire-actuated parallel manipulators is investigated at the torque level in order to perform desirable tasks to minimize the effect of impact, while maintaining positive tension in each wire. A local optimization routine is used in the simulation to minimize the tension in the wires while modifying the trajectory of the mobile platform and maintaining positive wire tensions. During collision, the tension in the wires is optimized to reduce the effect of impact, and after collision, the trajectory is modified and the wire tensions are minimized in order to avoid collision for the remainder of the trajectory. The effectiveness of the presented approach is studied through a simulation of an example planar wire-actuated manipulator.


2017 ◽  
Vol 83 ◽  
pp. 58-64 ◽  
Author(s):  
Anna Jaskot ◽  
Bogdan Posiadała ◽  
Szczepan Śpiewak

2015 ◽  
Vol 794 ◽  
pp. 419-426
Author(s):  
Philipp Tempel ◽  
Philipp Miermeister ◽  
Armin Lechler ◽  
Andreas Pott

This paper covers the kinematics and dynamics modelling of the mechatronic model for a 6 DOF cable-driven parallel robot and derives a real-time capable simulation model for such robots. The governing equations of motion for the platform are derived using Newton-Euler formalism, furthermore, the pulley kinematics of the winches and a linear spring-damper based cable model is introduced. Once the equations of motion are derived, closed-form force distribution is implemented and simulation results of the real-time capable model for the cable-driven parallel robot IPAnema3 are presented. Given the real-time capability, the presented model can be used for hardware-in-the-loop simulation or controller design, but also for case studies of highly dynamic or large-scale robots.


2013 ◽  
Vol 46 (8) ◽  
pp. 69-73 ◽  
Author(s):  
Xh. Bajrami ◽  
A. Dermaku ◽  
A. Shala ◽  
R. Likaj

2015 ◽  
Vol 1 (1) ◽  
pp. 5-16
Author(s):  
John Ohoiwutun

Utilization of conventional energy sources such as coal, fuel oil, natural gas and others on the one hand has a low operating cost, but on the other side of the barriers is the greater source of diminishing returns and, more importantly, the emergence of environmental pollution problems dangerous to human life. This study aims to formulate the kinematics and dynamics to determine the movement of Solar Power Mower. In this study, using solar power as an energy source to charge the battery which then runs the robot. Design and research was conducted in the Department of Mechanical Workshop Faculty of Engineering, University of Hasanuddin of Gowa. Control system used is a manual system using radio wave transmitter and receiver which in turn drive the robot in the direction intended. Experimental results showed that treatment with three variations of the speed of 6.63 m / s, 8.84 m / s and 15.89 m / sec then obtained the best results occur in grass cutting 15.89 sec and high-speed cutting grass 5 cm. Formulation of kinematics and dynamics for lawn mowers, there are 2 control input variables, x and y ̇ ̇ 3 to control the output variables x, y and θ so that there is one variable redudant. Keywords: mobile robots, lawn mower, solar power


Sign in / Sign up

Export Citation Format

Share Document