A Machine Learning Approach for Blockchain-Based Smart Home Networks Security

IEEE Network ◽  
2020 ◽  
pp. 1-7
Author(s):  
Muhammad Adnan Khan ◽  
Sagheer Abbas ◽  
Abdur Rehman ◽  
Yousaf Saeed ◽  
Asim Zeb ◽  
...  
Author(s):  
Mohammad Marufuzzaman ◽  
Teresa Tumbraegel ◽  
Labonnah Farzana Rahman ◽  
Lariyah Mohd Sidek

A smart home inhabitant performs a unique pattern or sequence of tasks repeatedly. Thus, a machine learning approach will be required to build an intelligent network of home appliances, and the algorithm should respond quickly to execute the decision. This study proposes a decision tree-based machine learning approach for predicting the activities using different appliances such as state, locations and time. A noise filter is employed to remove unwanted data and generate task sequences, and dual state properties of a home appliance are utilized to extract episodes from the sequence. An incremental decision tree approach was taken to reduce execution time. The algorithm was tested using a well-known smart home dataset from MavLab. The experimental results showed that the algorithm successfully extracted 689 predictions and their location at 90% accuracy, and the total execution time was 94 s, which is less than that of existing methods. A hardware prototype was designed using Raspberry Pi 2 B to validate the proposed prediction system. The general-purpose input-output (GPIO) interfaces of Raspberry Pi 2 B were used to communicate with the prototype testbed and showed that the algorithm successfully predicted the next activities.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1552-P
Author(s):  
KAZUYA FUJIHARA ◽  
MAYUKO H. YAMADA ◽  
YASUHIRO MATSUBAYASHI ◽  
MASAHIKO YAMAMOTO ◽  
TOSHIHIRO IIZUKA ◽  
...  

2020 ◽  
Author(s):  
Clifford A. Brown ◽  
Jonny Dowdall ◽  
Brian Whiteaker ◽  
Lauren McIntyre

2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


Sign in / Sign up

Export Citation Format

Share Document