scholarly journals A Simple Visual-Servoing Task on a Low-Accuracy, Low-Cost Arm: An Experimental Comparison Between Belief Space Planning and Proportional-Integral-Derivative Controllers

Author(s):  
Fabio Bonsignorio ◽  
Enrica Zereik
Author(s):  
Yalcin Isler ◽  
Savas Sahin ◽  
Orhan Ekren ◽  
Cuneyt Guzelis

This study deals with designing a decentralized multi-input multi-output controller board based on a low-cost microcontroller, which drives both parts of variable-speed scroll compressor and electronic-type expansion valve simultaneously in a chiller system. This study aims to show the applicability of commercial low-cost microcontroller to increase the efficiency of the chiller system, having variable-speed scroll compressor and electronic-type expansion valve with a new electronic card. Moreover, the refrigerant system proposed in this study provides the compactness, mobility, and flexibility, and also a decrease in the controller unit’s budget. The study was tested on a chiller system that consists of an air-cooled condenser, a variable-speed scroll compressor, and a stepper driven electronic-type expansion valve. The R134a was used as a refrigerant fluid and its flow was controlled by electronic-type expansion valve in this setup. Both variable-speed scroll compressor and electronic-type expansion valve were driven by the proposed hardware using either proportional integral derivative or fuzzy logic controller, which defines four distinct controller modes. The experimental results show that fuzzy logic controlled electronic-type expansion valve and proportional integral derivative controlled variable-speed scroll compressor mode give more robustness by considering the response time.


2017 ◽  
Vol 33 (4) ◽  
pp. 531-542 ◽  
Author(s):  
Daniel Rodríguez ◽  
Juan Reca ◽  
Juan Martínez ◽  
Miguel Urrestarazu

Abstract. In a soilless culture, water and nutrients must be frequently and precisely applied due to the reduced volume and low water holding capacity of the substrate. We describe a low-cost and efficient control system for the irrigation management of soilless culture based on an irrigation tray. Both irrigation and drainage volumes from the irrigation control tray are measured automatically. The proposed irrigation scheduling options were based on applying both variable timing and amounts. A Proportional Integral Derivative (PID) algorithm was used to establish the irrigation timing option while two different irrigation application options, based on measurements from the drainage hydrograph, were developed and tested. A field test performed on a tomato crop was carried out to assess the performance of the two irrigation application options. Both irrigation algorithms performed well as they fitted the leaching fraction for every irrigation event to the target value. The fruit yield and quality were comparable to results obtained from the control treatment of the tomato crop. The designed low-cost irrigation control system, if implemented on commercial farms, could prove to be economically very beneficial. Keywords: Automation, Drainage hydrograph, Irrigation control tray, Irrigation scheduling, Proportional-Integral-Derivative (PID) controller, Substrate culture.


2016 ◽  
Vol 12 (06) ◽  
pp. 54
Author(s):  
Kim Seng Chia ◽  
Xien Yin Yap

<span style="font-family: 'Times New Roman',serif; font-size: 10pt; mso-fareast-font-family: SimSun; mso-fareast-theme-font: minor-fareast; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;">A proportional-integral-derivative (PID) controller is a classical controller that has been applied in numerous applications. One learning lesson of PID control theory is to tune its proportional, integral, and derivative parameters so that the performance of system is optimal. Besides, teaching PID control theory verbally is challenging especially when transient response characteristics e.g. overshoot, rise time, and settling time are introduced. Thus, this study investigates the feasibility of a low cost mobile robot in conveying the knowledge of PID control theory. First, an inexpensive open-source mobile robot was modified so that the position of the robot can be recorded and visualized wirelessly. Second, a graphical user interface was built to visualize the movement of the robot. Lastly, the PID parameters were tuned and their effects were recorded and analyzed quantitatively. Findings show that the proposed method is capable of demonstrating the effects of P and D parameters correctly. </span>


2018 ◽  
Vol 15 (3) ◽  
pp. 172988141878209 ◽  
Author(s):  
Hadi Jahanshahi ◽  
Naeimeh Najafizadeh Sari ◽  
Viet-Thanh Pham ◽  
Fawaz E Alsaadi ◽  
Tasawar Hayat

Due to costly space projects, affordable flight models and test prototypes are of incomparable importance in academic and research applications, for example, data acquisition and subsystems testing. In this regard, CanSat could be used as a low-cost, high-tech, and lightweight model. CanSat carrier launch system is a simple second-order aerospace system. Aerospace systems require the highest level of effective controller performance. Adding second-order integral and second-order derivative terms to proportional–integral–derivative controller leads to the elimination of steady-state errors and yields to a faster systems convergence. Moreover, sliding mode control is considered as a robust controller that has appropriate features to track. Thus, this article tends to present an adaptive hybrid of higher order proportional–integral–derivative and sliding mode control optimized by multi-objective genetic algorithm to control a CanSat carrier launch system.


Author(s):  
Muhammad Apriliyanto ◽  
Miftachul Ulum ◽  
Koko Joni

<em>The process of folding clothes is one of the activities carried out in the laundry business or household. The activity is fairly easy but many people are still lazy to do it. As a result, clothes that have been washed will fall apart in certain rooms, thereby reducing the aesthetic value of a home. Semi Automatic T-Shirt Folding Machine is the right solution to make folding clothes easier and more time efficient. This tool is equipped with a servo motor that moves the folding board that has been designed in such a way that the user only needs to manghandle the shirt just once and simply push one button then the shirt will fold itself and will be neatly arranged through the clothes stacker board. The PID method is applied to DC motors that move under the clothes folder so that the buildup of clothes underneath will not be pressured upward when the clothes are piled up when they are folded. Ultrasonic sensor will measure the right height between the clothes with the door opening the stacking clothes with kp = 1, ki = 0.1, kd = 0.5 for thin clothes and kp = 5, ki = 1, kd = 2.5 for thick clothes so that the movement of the motor can adjust its speed . This tool can fold one shirt in 16.83 seconds 11 seconds faster than folding clothes manually</em>


Sign in / Sign up

Export Citation Format

Share Document