Simplified Path Tracking Control Laws for Quad-rotor Considered as Nonholonomic System

Author(s):  
A. A. Tunik
Author(s):  
J-L Yang ◽  
D-T Su ◽  
Y-S Shiao ◽  
K-Y Chang

This paper presents techniques for building system configuration, control architecture, and implementation of a vision-based wheeled mobile robot (WMR). The completed WMR has been built with the dead-reckoning method so as to determine the vehicle's velocity and posture by the numerical differentiation/integration over short travelling. The developed proportional-integral-derivative (PID) controllers show good transient performances; that is, the velocity of right and left wheels can track the commands quickly and correctly. Moreover, the path-tracking control laws have also been executed within the digital signal processor (DSP)-based controller in the WMR. The image-recognized system can obtain motion information at 15 frames/s by using the hybrid intelligent system (HIS) model, which is one of the well-known colour detection methods. The better performance a vision system has, the more successful the control laws design. The WMR obtains its posture from the dead-reckoning device together with the vision system. These subsystems are integrated, and the operators of the whole system are completed. This WMR system can be thought of as a platform for testing various tracking control laws and a signal-filtering method. To solve the problem of position/orientation tracking control of the WMR, two kinematical optimal non-linear predictive control laws are developed to manipulate the vehicle to follow the desired trajectories asymptotically. A Kalman filter scheme is used to reduce the bad effect of the imagine nose; thereby the accuracy of pose estimation can be improved. The experimental system is composed of a wireless RS232 modem, a DSP-based controller for the WMR, and a vision system with a host computer. A computation-effective and high-performance DSP-based controller is constructed for executing the developed sophisticated path-tracking laws. Finally, the simulation and experimental results show the feasibility and effectiveness of the proposed control laws.


2014 ◽  
Vol 716-717 ◽  
pp. 1512-1517
Author(s):  
Yu Ma ◽  
Yong Zhang ◽  
Jin Cheng ◽  
Qin Jun Zhao

With the social development and the continuous progress of science and technology, the mobile robots can greatly improve efficiency, reduce costs, many of these applications can be attributed to the backward path tracking control problem. A controller for backward path tracking of mobile robot with two trailers is addressed in this paper. The paper presents a new approach to stabilizing the system in backward motion by controlling the orientation angles of the two trailers. Nonlinear smooth control laws for orientations of the trailers with asymptotic stability in backward motion are then proposed. The result simulated in Simulink illustrates the effectiveness of the control law and the controller.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4374
Author(s):  
Jose Bernardo Martinez ◽  
Hector M. Becerra ◽  
David Gomez-Gutierrez

In this paper, we addressed the problem of controlling the position of a group of unicycle-type robots to follow in formation a time-varying reference avoiding obstacles when needed. We propose a kinematic control scheme that, unlike existing methods, is able to simultaneously solve the both tasks involved in the problem, effectively combining control laws devoted to achieve formation tracking and obstacle avoidance. The main contributions of the paper are twofold: first, the advantages of the proposed approach are not all integrated in existing schemes, ours is fully distributed since the formulation is based on consensus including the leader as part of the formation, scalable for a large number of robots, generic to define a desired formation, and it does not require a global coordinate system or a map of the environment. Second, to the authors’ knowledge, it is the first time that a distributed formation tracking control is combined with obstacle avoidance to solve both tasks simultaneously using a hierarchical scheme, thus guaranteeing continuous robots velocities in spite of activation/deactivation of the obstacle avoidance task, and stability is proven even in the transition of tasks. The effectiveness of the approach is shown through simulations and experiments with real robots.


Sign in / Sign up

Export Citation Format

Share Document