A high-speed, low-power 16-bit 0.25 /spl mu/m GaAs binary look-ahead carry (BLC) adder based on NOR gates for wireless video communication

Author(s):  
T. Enomoto ◽  
A. Hirobe ◽  
T. Satoh ◽  
M. Fujii ◽  
N. Yoshida ◽  
...  
2018 ◽  
Vol 7 (3) ◽  
pp. 1548
Author(s):  
P Sasipriya ◽  
V S Kanchana Bhaaskaran

This paper presents the Clocked Differential Cascode Adiabatic Logic (CDCAL), the quasi-adiabatic dynamic logic that can operate efficiently at GHz-class frequencies. It is operated by two phase sinusoidal power clock signal for the adiabatic pipeline. The proposed logic uses clocked control transistor in addition to the less complex differential cascode logic structure to achieve low power and high speed operation. To show the feasibility of implementation of both combinational and sequential logic circuits using the proposed logic, the CLA adder and counter have been selected. To evaluate the energy efficiency of the proposed logic, an 8-bit pipelined carry look-ahead (CLA) adder is designed using CCDAL and it is also compared against the other high speed two phase counterpart available in the literature and conventional static CMOS. The simulation results show that the CCDAL logic can operate efficiently at high frequencies compared to other two phase adiabatic logic circuits. All the circuits have been designed using UMC 90nm technology library and the simulations are carried out using industry standard Cadence® Virtuoso tool.  


Power consumption minimization in a circuit becomes imperative with growth in demands of portable goods. However, at the same time, its speed limits the performance of a system. Therefore, there is a need of choosing optimum circuit architecture that takes into account the both conflicting parameters, that is, power dissipation and speed. Arithmetic unit is one of the vital components of portable goods and out of all arithmetic operations, adders are the most commonly used. To address the issue of high power dissipation, low-power designing styles are becoming prominent now-a-days. Hybrid Dynamic Current Mode Logic is high-speed, low-power designing style that has been recently proposed in literature. Therefore, this paper presents the comparison between performances of various topologies of adders that are implemented using a high-speed, low-power designing style: Hybrid-Dynamic Current Mode Logic (H-DyCML). All the circuits are realized in Cadence Virtuoso using 180nm CMOS technology parameter. Various performance parameters are evaluated such as: Delay, Power, Power-Delay Product, and hardware utilization. It is found that carry look-ahead adder out-stands other adders in terms of overall performance.


2019 ◽  
Vol 7 (1) ◽  
pp. 24
Author(s):  
N. SURESH ◽  
K. S. SHAJI ◽  
KISHORE REDDY M. CHAITANYA ◽  
◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document