Surface Water Area Mapping in Huai River Basin Over the Past Three Decades from Landsat Imagery based on Google Earth Engine

Author(s):  
Haoming Xia ◽  
Jinyu Zhao ◽  
Yaochen Qin
2019 ◽  
Vol 11 (15) ◽  
pp. 1824 ◽  
Author(s):  
Haoming Xia ◽  
Jinyu Zhao ◽  
Yaochen Qin ◽  
Jia Yang ◽  
Yaoping Cui ◽  
...  

The dynamics of surface water play a crucial role in the hydrological cycle and are sensitive to climate change and anthropogenic activities, especially for the agricultural zone. As one of the most populous areas in China’s river basins, the surface water in the Huai River Basin has significant impacts on agricultural plants, ecological balance, and socioeconomic development. However, it is unclear how water areas responded to climate change and anthropogenic water exploitation in the past decades. To understand the changes in water surface areas in the Huai River Basin, this study used the available 16,760 scenes Landsat TM, ETM+, and OLI images in this region from 1989 to 2017 and processed the data on the Google Earth Engine (GEE) platform. The vegetation index and water index were used to quantify the spatiotemporal variability of the surface water area changes over the years. The major results include: (1) The maximum area, the average area, and the seasonal variation of surface water in the Huai River Basin showed a downward trend in the past 29 years, and the year-long surface water areas showed a slight upward trend; (2) the surface water area was positively correlated with precipitation (p < 0.05), but was negatively correlated with the temperature and evapotranspiration; (3) the changes of the total area of water bodies were mainly determined by the 216 larger water bodies (>10 km2). Understanding the variations in water body areas and the controlling factors could support the designation and implementation of sustainable water management practices in agricultural, industrial, and domestic usages.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 138
Author(s):  
Zijie Jiang ◽  
Weiguo Jiang ◽  
Ziyan Ling ◽  
Xiaoya Wang ◽  
Kaifeng Peng ◽  
...  

Surface water is an essential element that supports natural ecosystem health and human life, and its losses or gains are closely related to national or local sustainable development. Monitoring the spatial-temporal changes in surface water can directly support the reporting of progress towards the sustainable development goals (SDGs) outlined by the government, especially for measuring SDG 6.6.1 indicators. In our study, we focused on Baiyangdian Lake, an important lake in North China, and explored its spatiotemporal extent changes from 2014 to 2020. Using long-term Sentinel-1 SAR images and the OTSU algorithm, our study developed an automatic water extraction framework to monitor surface water changes in Baiyangdian Lake at a 10 m resolution from 2014 to 2020 on the Google Earth Engine cloud platform. The results showed that (1) the water extraction accuracy in our study was considered good, showing high consistency with the existing dataset. In addition, it was found that the classification accuracy in spring, summer, and fall was better than that in winter. (2) From 2014 to 2020, the surface water area of Baiyangdian Lake exhibited a slowly rising trend, with an average water area of 97.03 km2. In terms of seasonal variation, the seasonal water area changed significantly. The water areas in spring and winter were larger than those in summer and fall. (3) Spatially, most of the water was distributed in the eastern part of Baiyangdian Lake, which accounted for roughly 57% of the total water area. The permanent water area, temporary water area, and non-water area covered 49.69 km2, 97.77 km2, and 171.55 km2, respectively. Our study monitored changes in the spatial extent of the surface water of Baiyangdian Lake, provides useful information for the sustainable development of the Xiong’an New Area and directly reports the status of SDG 6.6.1 indicators over time.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3010 ◽  
Author(s):  
Ruimeng Wang ◽  
Haoming Xia ◽  
Yaochen Qin ◽  
Wenhui Niu ◽  
Li Pan ◽  
...  

The spatio-temporal change of the surface water is very important to agricultural, economic, and social development in the Hetao Plain, as well as the structure and function of the ecosystem. To understand the long-term changes of the surface water area in the Hetao Plain, we used all available Landsat images (7534 scenes) and adopted the modified Normalized Difference Water Index (mNDWI), Enhanced Vegetation Index (EVI), and Normalized Difference Vegetation Index (NDVI) to map the open-surface water from 1989 to 2019 in the Google Earth Engine (GEE) cloud platform. We further analyzed precipitation, temperature, and irrigated area, revealing the impact of climate change and human activities on long-term surface water changes. The results show the following. (1) In the last 31 years, the maximum, seasonal, and annual average water body area values in the Hetao Plain have exhibited a downward trend. Meanwhile, the number of maximum, seasonal, and permanent water bodies displayed a significant upward trend. (2) The variation of the surface water area in the Hetao Plain is mainly affected by the maximum water body area, while the variation of the water body number is mainly affected by the number of minimum water bodies. (3) Precipitation has statistically significant positive effects on the water body area and water body number, which has statistically significant negative effects with temperature and irrigation. The findings of this study can be used to help the policy-makers and farmers understand changing water resources and its driving mechanism and provide a reference for water resources management, agricultural irrigation, and ecological protection.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2091 ◽  
Author(s):  
Dong-Dong Zhang ◽  
Lei Zhang

Urbanization in China is progressing rapidly and continuously, especially in the newly developed metropolitan areas. The Google Earth Engine (GEE) is a powerful tool that can be used to efficiently investigate these changes using a large repository of available optical imagery. This work examined land-cover changes in the central region of the lower Yangtze River and exemplifies the application of GEE using the random forest classification algorithm on Landsat dense stacks spanning the 30 years from 1987 to 2017. Based on the obtained time-series land-cover classification results, the spatiotemporal land-use/cover changes were analyzed, as well as the main factors driving the changes in different land-cover categories. The results show that: (1) The obtained land datasets were reliable and highly accurate, with an overall accuracy ranging from 88% to 92%. (2) Over the past 30 years, built-up areas have continued to expand, increasing from 537.9 km2 to 1500.5 km2, and the total area occupied by built-up regions has expanded by 178.9% to occupy an additional 962.7 km2. The surface water area first decreased, then increased, and generally showed an increasing trend, expanding by 17.9%, with an area increase of approximately 131 km2. Barren areas accounted for 6.6% of the total area in the period 2015–2017, which was an increase of 94.8% relative to the period 1987–1989. The expansion of the built-up area was accompanied by an overall 25.6% (1305.7 km2) reduction in vegetation. (3) The complexity of the key factors driving the changes in the regional surface water extent was made apparent, mainly including the changes in runoff of the Yangtze River and the construction of various water conservancy projects. The effects of increasing the urban population and expanding industrial development were the main factors driving the expansion of urban built-up areas and the significant reduction in vegetation. The advantages and limitations arising from land-cover mapping by using the Google Earth Engine are also discussed.


2018 ◽  
Vol 10 (10) ◽  
pp. 1635 ◽  
Author(s):  
Chao Wang ◽  
Mingming Jia ◽  
Nengcheng Chen ◽  
Wei Wang

Dynamics of surface water is of great significance to understand the impacts of global changes and human activities on water resources. Remote sensing provides many advantages in monitoring surface water; however, in large scale, the efficiency of traditional remote sensing methods is extremely low because these methods consume a high amount of manpower, storage, and computing resources. In this paper, we propose a new method for quickly determining what the annual maximal and minimal surface water extent is. The maximal and minimal water extent in the year of 1990, 2000, 2010 and 2017 in the Middle Yangtze River Basin in China were calculated on the Google Earth Engine platform. This approach takes full advantage of the data and computing advantages of the Google Earth Engine’s cloud platform, processed 2343 scenes of Landsat images. Firstly, based on the estimated value of cloud cover for each pixel, the high cloud covered pixels were removed to eliminate the cloud interference and improve the calculation efficiency. Secondly, the annual greenest and wettest images were mosaiced based on vegetation index and surface water index, then the minimum and maximum surface water extents were obtained by the Random Forest Classification. Results showed that (1) the yearly minimal surface water extents were 14,751.23 km2, 14,403.48 km2, 13,601.48 km2, and 15,697.42 km2, in the year of 1990, 2000, 2010, and 2017, respectively. (2) The yearly maximal surface water extents were 18,174.76 km2, 20,671.83 km2, 19,097.73 km2, and 18,235.95 km2, in the year of 1990, 2000, 2010, and 2017, respectively. (3) The accuracies of surface water classification ranged from 86% to 93%. Additionally, the causes of these changes were analyzed. The accuracy evaluation and comparison with other research results show that this method is reliable, novel, and fast in terms of calculating the maximal and minimal surface water extent. In addition, the proposed method can easily be implemented in other regions worldwide.


Author(s):  
L. Bi ◽  
B. L. Fu ◽  
P. Q. Lou ◽  
T. Y. Tang

Abstract. Surface water plays an important role in ecological circulation. Global climate change and urbanization affect the distribution and quality of water. In order to obtain surface water information quickly and accurately, this study uses Google Earth Engine (GEE) as a data processing tool, 309 Landsat 8 series images from 2016 to 2019 are selected to calculate 4 different water indexes, including Normalized Difference Water Index (NDWI), Modified NDWI (MNDWI), Automated Water Extraction Index (AWEIsh) and Multi- Band Water Index (MBWI) to extract surface water in Pearl River Basin. In order to remove the influence of other ground objects, Normalized Vegetation Index (NDVI), Normalized Difference Building Index (NDBI) and Digital Surface Model (DSM) are combined with the above four water indexes, and threshold segmentation is used to eliminate the influence of vegetation, buildings and mountains. Finally, take the advantage of morphological filtering algorithm to eliminate non-water pixels. The results show that GEE is able to extract surface water in a very short time; AWEIsh has the highest overall accuracy of 94.12%, which is 7.20% higher than the classical NDWI method; There is no significant difference in the width and shape of rivers from 2015 to 2018; The locations of the rivers extracted by the four methods are consistent with the 1 : 100,000 river system basic data of 2015 provided by the Ministry of Water Resources of the People’s Republic of China.


2019 ◽  
Vol 11 (3) ◽  
pp. 313 ◽  
Author(s):  
Yingbing Wang ◽  
Jun Ma ◽  
Xiangming Xiao ◽  
Xinxin Wang ◽  
Shengqi Dai ◽  
...  

In recent years, the shrinkage of Poyang Lake, the largest freshwater lake in China, has raised concerns for society. The regulation of the Three Gorges Dam (TGD) has been argued to be a cause of the depletion of the lake by previous studies. However, over the past few decades, the lake’s surface water dynamic has remained poorly characterized, especially before the regulation of the TGD (2003). By calculating the inundation frequency with an index- and pixel-based water detection algorithm on Google Earth Engine (GEE), this study explored the spatial–temporal variation of the lake during 1988–2016 and compared the differences in Poyang Lake’s water body between the pre- and post-TGD periods. The year-long water body area of the lake has shown a significant decreasing trend over the past 29 years and has shifted to a smaller regime since 2006. The inundation frequency of the lake has also generally decreased since 2003, particularly at the central part of the lake, and the effects of this trend have been most severe in the spring and autumn seasons. The lake’s area has shown significant correlation with the precipitation of the Poyang Lake Basin on an inner-annual scale. The drivers of and relevant factors relating to the inter-annual variation of the lake’s surface water should be further investigated in the future.


2009 ◽  
Vol 24 (5) ◽  
pp. 889-908 ◽  
Author(s):  
Yongyong Zhang ◽  
Jun Xia ◽  
Tao Liang ◽  
Quanxi Shao

Sign in / Sign up

Export Citation Format

Share Document