Ultra-wideband (UWB) balanced bandpass filters with wide stop band and intrinsic common-mode rejection based on embedded capacitive electromagnetic bandgaps (EBG)

Author(s):  
Paris Velez ◽  
Javier Mata-Contreras ◽  
Jordi Bonache ◽  
Ferran Martin
2015 ◽  
Vol 63 (4) ◽  
pp. 1272-1280 ◽  
Author(s):  
Paris Velez ◽  
Jordi Naqui ◽  
Armando Fernandez-Prieto ◽  
Jordi Bonache ◽  
Javier Mata-Contreras ◽  
...  

Author(s):  
Yanning Yuan ◽  
Yuchen Zhao ◽  
Xiaoli Xi

Abstract A single-layer ultra-wideband (UWB) stop-band frequency selective surface (FSS) has several advantages in wireless systems, including a simple design, low debugging complexity, and an appropriate thickness. This study proposes a miniaturized UWB stop-band FSS design. The proposed FSS structure consists of a square-loop and metalized vias that are arranged on a single layer substrate; it has an excellent angle and polarization-independent characteristics. At an incident angle of 60°, the polarization response frequencies of the transverse electric and magnetic modes only shifted by 0.003 f0 and 0.007 f0, respectively. The equivalent circuit models of the square-loop and metallized vias structure are analysed and the accuracy of the calculation is evaluated by comparing the electromagnetic simulation. The 20 × 20 array constitutes an FSS reflector with a unit size of 4.2 mm × 4.2 mm (less than one-twentieth of the wavelength of 3 GHz), which realizes an UWB quasi-constant gain enhancement (in-band flatness is <0.5 dB). Finally, the simulation results were verified through sample processing and measurement; consistent results were obtained. The FSS miniaturization design method proposed in this study could be applied to the design of passband FSS (complementary structure), antennas and filters, among other applications.


2020 ◽  
Vol 55 (4) ◽  
Author(s):  
Amer Abbood Al-Behadili ◽  
Adham R. Azeez ◽  
Sadiq Ahmed ◽  
Zaid A. Abdul Hassain

This paper presents an ultra-wideband tapered slot patch antenna with bi-directional radiation, reconfigurable for dual band-notched capability and fed by coplanar waveguide. The proposed antenna showed excellent ultra-wideband characteristics with bandwidth of (1.9–12 GHz). In order to reduce the interference of the narrow band communications represented by Worldwide Interoperability for Microwave Access radiation in the range (3.4–3.9) GHz and standard IEEE 802.11a. application (from 5.1 GHz to 6.1 GHz), the antenna was accompanied with adjustable dual-stop band capability in these bands. The dual-band notches are achieved with aid of inserting a parasitic single split ring resonator and etching a single circular complementary circle split ring resonator. The proposed antenna used epoxy (FR4) substrate material with ????r= 4.4 and dimensions of .


Author(s):  
Roberto Gomez-Garcia ◽  
Jose-Maria Munoz-Ferreras ◽  
Wenjie Feng ◽  
Dimitra Psychogiou

Sign in / Sign up

Export Citation Format

Share Document