A Multi-Mode Compact Size Multi-Coil Tuned Inductive Peaking ILFD for Low Injected Power Level

Author(s):  
Nagarajan Mahalingam ◽  
Kaixue Ma ◽  
Kiat Seng Yeo
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 59059-59068 ◽  
Author(s):  
Nagarajan Mahalingam ◽  
Kaixue Ma ◽  
Kiat Seng Yeo

2018 ◽  
Vol 10 (2) ◽  
pp. 227-233
Author(s):  
Gholamreza Karimi ◽  
Fatemeh Javidan ◽  
Amir Hossein Salehi

AbstractIn this paper, an ultra-wideband (UWB) band-pass filter (BPF) with a sharp notch band is presented. The UWB BPF consists of modified elliptical-ring and multi-mode stub-loaded resonator (MM-SLR). By adding the asymmetric tight coupled lines resonator via input/output (I/O) lines, it can be achieved UWB band-pass response. With adding two bends to the middle resonator, a notch band at 6.86 GHz is created, so that it can be controlled using the mathematical formulas (MF). In the meantime, the equivalent circuit of the middle resonator is obtained using L–C analysis. Measured results of fabricated filter have the advantage such as ultra-wide pass band (flandfHof the defined UWB pass band are 3.776 and 10.42 GHz, which satisfy the requirements of FCC-specified UWB limits), compact size, low insertion loss <0.65 dB and the stop band of the proposed filter is from 11.1 to 16.32 GHz with attenuation of −39.8 to −42.14 dB, respectively. The proposed UWB filter is realized using the substrate with dielectric constant of 2.2 and substrate height of 0.787 mm. Experimental verification is provided and good agreement has been found between simulation and measurement results.


Author(s):  
E. D. Salmon ◽  
J. C. Waters ◽  
C. Waterman-Storer

We have developed a multi-mode digital imaging system which acquires images with a cooled CCD camera (Figure 1). A multiple band pass dichromatic mirror and robotically controlled filter wheels provide wavelength selection for epi-fluorescence. Shutters select illumination either by epi-fluorescence or by transmitted light for phase contrast or DIC. Many of our experiments involve investigations of spindle assembly dynamics and chromosome movements in live cells or unfixed reconstituted preparations in vitro in which photodamage and phototoxicity are major concerns. As a consequence, a major factor in the design was optical efficiency: achieving the highest image quality with the least number of illumination photons. This principle applies to both epi-fluorescence and transmitted light imaging modes. In living cells and extracts, microtubules are visualized using X-rhodamine labeled tubulin. Photoactivation of C2CF-fluorescein labeled tubulin is used to locally mark microtubules in studies of microtubule dynamics and translocation. Chromosomes are labeled with DAPI or Hoechst DNA intercalating dyes.


2009 ◽  
Vol E92-B (12) ◽  
pp. 3717-3725
Author(s):  
Thomas HUNZIKER ◽  
Ziyang JU ◽  
Dirk DAHLHAUS

2014 ◽  
Vol E97.C (7) ◽  
pp. 781-786 ◽  
Author(s):  
Mohammad NASIR UDDIN ◽  
Takaaki KIZU ◽  
Yasuhiro HINOKUMA ◽  
Kazuhiro TANABE ◽  
Akio TAJIMA ◽  
...  

2020 ◽  
Vol 4 (4) ◽  
pp. 56-63
Author(s):  
Victor N. ANTIPOV ◽  
◽  
Andrey D. GROZOV ◽  
Anna V. IVANOVA ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document