Joint friction identification for robots using TSK fuzzy system based on subtractive clustering

Author(s):  
Zhongkai Qin ◽  
Qun Ren ◽  
Luc Baron ◽  
Marek Balazinski ◽  
Lionel Birglen
Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 484 ◽  
Author(s):  
Stéfano Frizzo Stefenon ◽  
Roberto Zanetti Freire ◽  
Leandro dos Santos Coelho ◽  
Luiz Henrique Meyer ◽  
Rafael Bartnik Grebogi ◽  
...  

The surface contamination of electrical insulators can increase the electrical conductivity of these components, which may lead to faults in the electrical power system. During inspections, ultrasound equipment is employed to detect defective insulators or those that may cause failures within a certain period. Assuming that the signal collected by the ultrasound device can be processed and used for both the detection of defective insulators and prediction of failures, this study starts by presenting an experimental procedure considering a contaminated insulator removed from the distribution line for data acquisition. Based on the obtained data set, an offline time series forecasting approach with an Adaptive Neuro-Fuzzy Inference System (ANFIS) was conducted. To improve the time series forecasting performance and to reduce the noise, Wavelet Packets Transform (WPT) was associated to the ANFIS model. Once the ANFIS model associated with WPT has distinct parameters to be adjusted, a complete evaluation concerning different model configurations was conducted. In this case, three inference system structures were evaluated: grid partition, fuzzy c-means clustering, and subtractive clustering. A performance analysis focusing on computational effort and the coefficient of determination provided additional parameter configurations for the model. Taking into account both parametrical and statistical analysis, the Wavelet Neuro-Fuzzy System with fuzzy c-means showed that it is possible to achieve impressive accuracy, even when compared to classical approaches, in the prediction of electrical insulators conditions.


2017 ◽  
Author(s):  
Mahdi Zarei

AbstractThis paper presents the development and evaluation of different versions of Neuro-Fuzzy model for prediction of spike discharge patterns. We aim to predict the spike discharge variation using first spike latency and frequency-following interval. In order to study the spike discharge dynamics, we analyzed the Cerebral Cortex data of the cat from [29]. Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Wang and Mendel (WM), Dynamic evolving neural-fuzzy inference system (DENFIS), Hybrid neural Fuzzy Inference System (HyFIS), genetic for lateral tuning and rule selection of linguistic fuzzy system (GFS.LT.RS) and subtractive clustering and fuzzy c-means (SBC) algorithms are applied for data. Among these algorithms, ANFIS and GFS.LT.RS models have better performance. On the other hand, ANFIS and GFS.LT.RS algorithms can be used to predict the spike discharge dynamics as a function of first spike latency and frequency with a higher accuracy compared to other algorithms.


The paper aims to identify input variables of fuzzy systems, generate fuzzy rule bases by using the fuzzy subtractive clustering, and apply fuzzy system of Takagi Sugeno to predict rice stocks in Indonesia. The monthly rice procurement dataset in the period January 2000 to March 2017 are divided into training data (January 2000 to March 2016 and testing data (April 2016 to March 2017). The results of identification of the fuzzy system input variables are lags as system input including . The Input-output clustering fuzzy subtractive and selecting optimal groups by using the cluster thigness measures indicator produced 4 fuzzy rules.The fuzzy system performance in the training data has a value of R2 of 0.8582, while the testing data produces an R2 of 0.7513.


2021 ◽  
Vol 11 (16) ◽  
pp. 7766
Author(s):  
Dewang Chen ◽  
Jijie Cai ◽  
Yunhu Huang ◽  
Yisheng Lv

Fuzzy systems (FSs) are popular and interpretable machine learning methods, represented by the adaptive neuro-fuzzy inference system (ANFIS). However, they have difficulty dealing with high-dimensional data due to the curse of dimensionality. To effectively handle high-dimensional data and ensure optimal performance, this paper presents a deep neural fuzzy system (DNFS) based on the subtractive clustering-based ANFIS (SC-ANFIS). Inspired by deep learning, the SC-ANFIS is proposed and adopted as a submodule to construct the DNFS in a bottom-up way. Through the ensemble learning and hierarchical learning of submodules, DNFS can not only achieve faster convergence, but also complete the computation in a reasonable time with high accuracy and interpretability. By adjusting the deep structure and the parameters of the DNFS, the performance can be improved further. This paper also performed a profound study of the structure and the combination of the submodule inputs for the DNFS. Experimental results on five regression datasets with various dimensionality demonstrated that the proposed DNFS can not only solve the curse of dimensionality, but also achieve higher accuracy, less complexity, and better interpretability than previous FSs. The superiority of the DNFS is also validated over other recent algorithms especially when the dimensionality of the data is higher. Furthermore, the DNFS built with five inputs for each submodule and two inputs shared between adjacent submodules had the best performance. The performance of the DNFS can be improved by distributing the features with high correlation with the output to each submodule. Given the results of the current study, it is expected that the DNFS will be used to solve general high-dimensional regression problems efficiently with high accuracy and better interpretability.


2011 ◽  
Vol 3 (2) ◽  
pp. 11-15
Author(s):  
Seng Hansun

Recently, there are so many soft computing methods been used in time series analysis. One of these methods is fuzzy logic system. In this paper, we will try to implement fuzzy logic system to predict a non-stationary time series data. The data we use here is Mackey-Glass chaotic time series. We also use MATLAB software to predict the time series data, which have been divided into four groups of input-output pairs. These groups then will be used as the input variables of the fuzzy logic system. There are two scenarios been used in this paper, first is by using seven fuzzy sets, and second is by using fifteen fuzzy sets. The result shows that the fuzzy system with fifteen fuzzy sets give a better forecasting result than the fuzzy system with seven fuzzy sets. Index Terms—forecasting, fuzzy logic, Mackey-Glass chaotic, MATLAB, time series analysis


Sign in / Sign up

Export Citation Format

Share Document