Fabrication of magnetic nanostructures using the focused ion beam technique

Author(s):  
Dan You ◽  
Yuankai Zheng ◽  
Zaibing Guo ◽  
Zhiyong Liu ◽  
Ping Luo ◽  
...  
2021 ◽  
Vol 7 (2) ◽  
pp. 28
Author(s):  
Hamza Cansever ◽  
Jürgen Lindner

The phenomenon of magnetic resonance and its detection via microwave spectroscopy provide insight into the magnetization dynamics of bulk or thin film materials. This allows for direct access to fundamental properties, such as the effective magnetization, g-factor, magnetic anisotropy, and the various damping (relaxation) channels that govern the decay of magnetic excitations. Cavity-based and broadband ferromagnetic resonance techniques that detect the microwave absorption of spin systems require a minimum magnetic volume to obtain a sufficient signal-to-noise ratio (S/N). Therefore, conventional techniques typically do not offer the sensitivity to detect individual micro- or nanostructures. A solution to this sensitivity problem is the so-called planar microresonator, which is able to detect even the small absorption signals of magnetic nanostructures, including spin-wave or edge resonance modes. As an example, we describe the microresonator-based detection of spin-wave modes within microscopic strips of ferromagnetic A2 Fe60Al40 that are imprinted into a paramagnetic B2 Fe60Al40-matrix via focused ion-beam irradiation. While microresonators operate at a fixed microwave frequency, a reliable quantification of the key magnetic parameters like the g-factor or spin relaxation times requires investigations within a broad range of frequencies. Furthermore, we introduce and describe the step from microresonators towards a broadband microantenna approach. Broadband magnetic resonance experiments on single nanostructured magnetic objects in a frequency range of 2–18 GHz are demonstrated. The broadband approach has been employed to explore the influence of lateral structuring on the magnetization dynamics of a Permalloy (Ni80Fe20) microstrip.


2005 ◽  
Vol 17 (1) ◽  
pp. 338-343 ◽  
Author(s):  
V Nagarajan ◽  
A Stanishevsky ◽  
R Ramesh

2000 ◽  
Vol 6 (S2) ◽  
pp. 530-531
Author(s):  
M.G. Burke ◽  
P.T. Duda ◽  
G. Botton ◽  
M. W. Phaneuf

Focused Ion Beam (FIB) micromachining techniques have gained significant attention over the past few years as a promising method for the preparation of a variety of metallic and nonmetallic materials for subsequent characterization using transmission electron microscopy (TEM) The advantage of the FIB in terms of site specificity and speed for the preparation of uniform electron transparent sections has opened a wide range of potential applications in materials characterization. The ability to image the sample in the FIB can also provide important microstructural data for materials analysis. In this study, both conventionally electropolished and FIB-ed specimens were prepared in order to characterize the microstructure of a commercially-produced tube of Alloy 600 (approximately Ni-15 Cr-10 Fe- 0.05 C). The electropolished samples were prepared using a solution of 20% HClO4 - 80% CH3OH at ∼-40°C. The FIB sections were obtained from a cross-section of the tube that had been mechanically thinned to ∼100 μm. The section was thinned in a Micrion 2500 FIB system with a Ga ion beam at 50 kV accelerating voltage.


Author(s):  
Andrzej Witkowski ◽  
Tomasz Płociński ◽  
Justyna Grzonka ◽  
Izabela Zgłobicka ◽  
Izabela Zgłobicka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document