Nanomaterials and nanocomposites for high energy/high power supercapacitors

Author(s):  
Constantina Lekakou ◽  
Chunhong Lei ◽  
Foivos Markoulidis ◽  
Aldo Sorniotti
Keyword(s):  
2010 ◽  
Vol 12 (11) ◽  
pp. 1618-1621 ◽  
Author(s):  
Donghan Kim ◽  
Sun-Ho Kang ◽  
Mahalingam Balasubramanian ◽  
Christopher S. Johnson

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Chen Li ◽  
Xiong Zhang ◽  
Kai Wang ◽  
Xianzhong Sun ◽  
Yanan Xu ◽  
...  

AbstractLithium-ion capacitors are envisaged as promising energy-storage devices to simultaneously achieve a large energy density and high-power output at quick charge and discharge rates. However, the mismatched kinetics between capacitive cathodes and faradaic anodes still hinder their practical application for high-power purposes. To tackle this problem, the electron and ion transport of both electrodes should be substantially improved by targeted structural design and controllable chemical doping. Herein, nitrogen-enriched graphene frameworks are prepared via a large-scale and ultrafast magnesiothermic combustion synthesis using CO2 and melamine as precursors, which exhibit a crosslinked porous structure, abundant functional groups and high electrical conductivity (10524 S m−1). The material essentially delivers upgraded kinetics due to enhanced ion diffusion and electron transport. Excellent capacities of 1361 mA h g−1 and 827 mA h g−1 can be achieved at current densities of 0.1 A g−1 and 3 A g−1, respectively, demonstrating its outstanding lithium storage performance at both low and high rates. Moreover, the lithium-ion capacitor based on these nitrogen-enriched graphene frameworks displays a high energy density of 151 Wh kg−1, and still retains 86 Wh kg−1 even at an ultrahigh power output of 49 kW kg−1. This study reveals an effective pathway to achieve synergistic kinetics in carbon electrode materials for achieving high-power lithium-ion capacitors.


2021 ◽  
Vol 4 (2) ◽  
pp. 1833-1839
Author(s):  
Chunyan Wang ◽  
Mingqiang Wang ◽  
Li Liu ◽  
Yudong Huang
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3586
Author(s):  
Qi An ◽  
Xingru Zhao ◽  
Shuangfu Suo ◽  
Yuzhu Bai

Lithium-ion capacitors (LICs) have been widely explored for energy storage. Nevertheless, achieving good energy density, satisfactory power density, and stable cycle life is still challenging. For this study, we fabricated a novel LIC with a NiO-rGO composite as a negative material and commercial activated carbon (AC) as a positive material for energy storage. The NiO-rGO//AC system utilizes NiO nanoparticles uniformly distributed in rGO to achieve a high specific capacity (with a current density of 0.5 A g−1 and a charge capacity of 945.8 mA h g−1) and uses AC to provide a large specific surface area and adjustable pore structure, thereby achieving excellent electrochemical performance. In detail, the NiO-rGO//AC system (with a mass ratio of 1:3) can achieve a high energy density (98.15 W h kg−1), a high power density (10.94 kW kg−1), and a long cycle life (with 72.1% capacity retention after 10,000 cycles). This study outlines a new option for the manufacture of LIC devices that feature both high energy and high power densities.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 123
Author(s):  
Jacek Jakubowski ◽  
Marek Kuchta ◽  
Roman Kubacki

This article investigates the issue of measuring high-power microwave (HPM) pulses. The high energy of these pulses poses a significant threat to many electronic systems, including those used to manage critical infrastructure. This work focuses on requirements for a potential portable measurement device and suggests the application of a method for this purpose, involving the use of a D-dot sensor and a rapid A/D converter. The applied converter enables recording the time waveform on the measuring chain output, also in the case of repetition and time duration of HPM signals. The authors also present a quantitative description of signal processing by the analogue section of the measurement chain solution presented herein and suggest algorithms for digital processing of the signals, the objective of which is to minimize low-frequency interference in the process of reconstructing the time waveform of an electric field using numerical integration.


2021 ◽  
pp. 127874
Author(s):  
Jiangtao Guo ◽  
Jiangfeng Wang ◽  
Xiaoqin Wang ◽  
xiaochao Wang ◽  
Wei Fan ◽  
...  

2015 ◽  
Author(s):  
Eugene Anoikin ◽  
Alexander Muhr ◽  
Andrew Bennett ◽  
Daniel Twitchen ◽  
Henk de Wit

Sign in / Sign up

Export Citation Format

Share Document