Reactive power planning against power system steady state voltage instability

Author(s):  
Venkat Krishnan ◽  
Haifeng Liu ◽  
James D. McCalley
2012 ◽  
Vol 433-440 ◽  
pp. 7208-7212
Author(s):  
Ya Min Su Hlaing ◽  
Ze Ya Aung

This thesis implements power flow application, Newton-Raphson method. The Newton-Raphson method is mainly employed in the solution of power flow problems. The network of Myanma electric power system is used as the reference case. The system network contains 90 buses and 106 brunches. The weak points are found in the network by using Newton-Raphson method. Bus 16, 17, 85 and 86 have the most weak bus voltages. The medium transmission line between bus 87 and bus 17 is compensated by using MATLAB program software. The transmission line is compensated with shunt reactors, series and shunt capacitors to improve transient and steady-state stability, more economical loading, and minimum voltage dip on load buses and to supply the requisite reactive power to maintain the receiving end voltage at a satisfactory level. The system performance is tested under steady-state condition. This paper investigates and improves the steady–state operation of Myanma Power System Network.


2019 ◽  
Vol 3 (1) ◽  
pp. 26 ◽  
Author(s):  
Vishnu Sidaarth Suresh

Load flow studies are carried out in order to find a steady state solution of a power system network. It is done to continuously monitor the system and decide upon future expansion of the system. The parameters of the system monitored are voltage magnitude, voltage angle, active and reactive power. This paper presents techniques used in order to obtain such parameters for a standard IEEE – 30 bus and IEEE-57 bus network and makes a comparison into the differences with regard to computational time and effectiveness of each solver


Author(s):  
Ahmad Fateh Mohamad Nor ◽  
Marizan Sulaiman ◽  
Aida Fazliana Abdul Kadir ◽  
Rosli Omar

Voltage instability analysis in electric power system is one of the most important factors in order to maintain the equilibrium of the power system. A power system is said to be unstable if the system is not able to maintain the voltage at all buses in the system remain unchanged after the system is being subjected to a disturbance.The research work presented in this paper is about the analysis of voltage instability of electric power system by using voltage stability margin (VSM), load real power (P) margin, reactive power (Q) margin, reactive power-voltage (QV) and real power-voltage (PV) modal analysis. IEEE 30-bus system has been chosen as the power system. The load flow analysis are simulated by using Power World Simulator software version 16. Both QV and PV modal analysis were done by using MATLAB application software.


2020 ◽  
Vol 12 (21) ◽  
pp. 9225
Author(s):  
Anis Adiba Zawawi ◽  
Nur Fadilah Ab Aziz ◽  
Mohd Zainal Abidin Ab Kadir ◽  
Halimatun Hashim ◽  
Zmnako Mohammed

Geomagnetic induced current (GIC) occurs as a direct consequence of abnormal space weather which starts from the sun and may flow into a power system network through neutral grounding connections. The flow of GIC through grounded neutral power transformer has been a major concern to researchers since it can potentially affect power system equipment. Most of the previous research was focused on high and mid latitude countries only. However, it has been proven that the GIC is not only limited to high and mid latitudes, but also extends to power systems at lower geographic latitudes. This paper aims to investigate the impacts of GIC on selected 275 kV subpower system networks in Peninsular Malaysia, which is among the low latitude countries. Its impact in terms of magnitude and duration is also assessed together with the use of neutral earthing resistor (NER) as a potential blocking component to reduce the impact of GIC on the Malaysian power system network. Results demonstrated that when GIC exists in the power system, power transformers undergo half-cycle saturation that may lead to a reactive power loss and power system voltage instability. In this case, the power transformer can only withstand a maximum GIC value of 7 A, and beyond this value, if prolonged, may lead to voltage instability. It turned out that GIC magnitude had more impact compared to duration. However, long duration with high magnitude of GIC is the most hazardous to power transformers and could potentially cause major faults in the power system network. As part of mitigation, NER with a value of 315.10 Ω can be used to limit the GIC current flow and thus provide protection to the power system network. Clearly, the issue of GIC undoubtedly affects the reliability, security and sustainability of power system operation, especially networks with highly critical load and capacity and, therefore, thorough studies are required to assess and mitigate this issue.


Sign in / Sign up

Export Citation Format

Share Document