Combined Approach of LST-ANN for Discrimination between Transformer Inrush Current and Internal Fault

Author(s):  
Amani A AlOmari ◽  
Abdallah A. Smadi ◽  
Brian K. Johnson ◽  
Eyad A. Feilat

This paper presents a new innovative algorithm for Numerical Differential Relay design of transformer. Fault information is critical for operating and maintaining power networks. This algorithm provides accurate performance for transformer by which is independent of system conditions such as: External fault, Inrush current, CT saturation. Locating transformer faults quickly and accurately is very important for economy, safety and reliability point of view. Both fault-detection and protection indices are derived by using Numerical Differential Relay algorithm design of transformer. The embedded based differential and operating current measurement device is called numerical differential relay is among the most important development in the field of instantaneous fault operation. Numerical relay provides measurement of differential current and operating current at power transformer above 5MVA in substation. Simulation studies are carried out using MATLAB Software show that the proposed scheme provides a high accuracy and fast relay response in internal fault conditions. Current transformers form an important part of protective systems. Ideal Current Transformers (CTs) are expected to reflect the primary current faithfully on the secondary side. Under conditions the CT saturates, and hence it cannot reproduce the primary current faithfully. This paper deals with simulation methods for determining CT performance under different factor. A Simulink model has been developed to observe CT response under steady state w.r.t Burden, Turns ratio, Asymmetrical current, Hysteresis conditions. Thus, it is now possible to evaluate the CT performance under these factors


2013 ◽  
Vol 313-314 ◽  
pp. 887-890
Author(s):  
Mao Fa Gong ◽  
Guo Liang Li ◽  
Wen Hua Xia ◽  
Hong Lin Yan ◽  
Jing Wen Qu ◽  
...  

To improve transformer longitudinal differential protections reliability, this paper deeply analyzes generation mechanism and characteristic of transformer inrush current, and uses PSCAD/EMTDC software to simulate 188 kinds of transformer operation states. They are including internal fault current, inrush current and no-load closing with internal fault. On the background of those simulations, it proposes a simple and accurate method to identify inrush current based on SVM. SVM selects Gaussion Kernel, and takes three-phase differential current, fundamental, secondary harmonic and third harmonic as characteristic quantities. Many cross-validation results verify that the training SVM has high accuracy. This method can identify inrush current and internal fault current (including no-load closing with internal fault current) rapidly and accurately. It takes less time, and is easy to perform.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1814
Author(s):  
Tao Zheng ◽  
Xinhui Yang ◽  
Xingchao Guo ◽  
Xingguo Wang ◽  
Chengqi Zhang

Through the analysis of the recovery inrush current generated by the external fault removal of the converter transformer, it is pointed out that the zero-sequence current caused by the recovery inrush may result in the saturation of the neutral current transformer (CT), whose measurement distortion contributes to the mis-operation of zero-sequence differential current protection. In this paper, a new scheme of zero-sequence differential current protection based on waveform correlation is proposed. By analyzing the characteristics of zero-sequence current under internal fault, external fault and external fault removal, the waveform correlation of the zero-sequence current measured at the terminal of the transformer and the zero-sequence current measured at the neutral point of the transformer is used for identification. The polarity of the CT is selected to guarantee the zero-sequence currents at the terminal and neutral point of the transformer exhibit a "ride through" characteristic under external fault, then the waveform similarity is high, and the correlation coefficient is positive. On the other hand, when internal fault occurs, zero-sequence current waveforms on both sides differ from each other largely, and the correlation coefficient is negative. Through a large number of simulations verified by PSCAD/EMTDC, this criterion can accurately identify internal and external faults, exempt from effects of the recovery inrush. Moreover, it presents certain ability for CT anti-saturation.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 126 ◽  
Author(s):  
Mudita Banerjee ◽  
Dr. Anita Khosla

This paper presents the second harmonics present in the primary current of a power transformer at different conditions using Fast Fourier Transform and Total Harmonic Distortion techniques to analyze the inrush condition and to distinguish it with fault condition of a power transformer. Result shows that the 2nd harmonic content is pre-dominant in inrush condition of primary current of the power transformer. It is observed that there are significant differences amongst the parameters found during inrush condition, normal condition and internal fault condition which are useful in the identification of magnetizing inrush current of power transformer. The simulation is done in MATLAB/SIMULINK. 


Sign in / Sign up

Export Citation Format

Share Document