CryingJackpot: Network Flows and Performance Counters against Cryptojacking

Author(s):  
Gilberto Gomes ◽  
Luis Dias ◽  
Miguel Correia
2013 ◽  
Vol 18 ◽  
pp. 2557-2560 ◽  
Author(s):  
Josué Feliu ◽  
Julio Sahuquillo ◽  
Salvador Petit ◽  
José Duato

Author(s):  
Chieh-Yu Hsiao ◽  
Mark Hansen

Passenger flow is an important planning factor in an air transportation system. However, forecasting segment (link) and airport flows becomes more complicated in a hub-and-spoke system since segment flows are the aggregations of route flows, and the number of routes increases with hubbing activities. This research develops an equilibrium model considering certain important characteristics of an air transportation system such as distance, airport delay, airline competition, and networks to predict segment and airport passenger flows from the viewpoint of the whole system. The major features of the model include ( a) treatment of segment flows and airport delays as endogenous by considering the feedback of assigned segment flows and their impacts on airports; ( b) reflecting the flexibility of air networks, a start with all links between all airports as the potential network and determination of the predicted network according to the equilibrium flows on segments; and ( c) connection of key elements of the system so that it can evaluate the system impacts of some element changes. The model is demonstrated by applying it to the National Airspace System of the United States. Several characteristics of the model are also investigated. In addition, a policy experiment shows that improvement of an airport not only affects the airport itself but also changes the flows and performance of other airports–-the model can be a tool for evaluating systemwide effects. Finally, the model's limitations and possible remedies are discussed.


Author(s):  
Karthik K. Srinivasan ◽  
Zhiyong Guo

Day-to-day dynamics in an urban traffic network induced by departure time dynamics in commuter decisions are investigated. This investigation relaxes some key restrictions about fixed departure time and equilibrium assumptions to analyze the stability and performance of urban traffic networks over a multiple day planning horizon. A simulation-based framework is developed to analyze day-to-day dynamics by integrating an empirically calibrated model of dynamic departure time decisions with a dynamic network assignment model. Computational experiments are used to investigate the effect of the following experimental factors: recurrent network congestion level, time-dependent loading profile, and users’ sensitivity to commute experience and trip-time volatility on network performance and reliability. The findings provide evidence of considerable day-to-day variations and stochasticity in network flows and performance, even under the assumption of fixed routes and in the absence of information. The results indicate that ( a) the network performance under departure time dynamics can deviate significantly from equilibrium; ( b) the departure time adjustment process is remarkably stable and reaches stationarity, although the departure time choices do not appear to be at equilibrium; ( c) departure time dynamics introduce significant volatility in trip times from day to day; and ( d) increasing the sensitivity of users to commute and network performance attributes (schedule delay, trip-time variability) can lead to more stable system behavior and reliability. These results have important implications for estimation of time-dependent origin–destination matrices, dynamic network analysis, and effective congestion management strategies.


Author(s):  
H. M. Thieringer

It has repeatedly been show that with conventional electron microscopes very fine electron probes can be produced, therefore allowing various micro-techniques such as micro recording, X-ray microanalysis and convergent beam diffraction. In this paper the function and performance of an SIEMENS ELMISKOP 101 used as a scanning transmission microscope (STEM) is described. This mode of operation has some advantages over the conventional transmission microscopy (CTEM) especially for the observation of thick specimen, in spite of somewhat longer image recording times.Fig.1 shows schematically the ray path and the additional electronics of an ELMISKOP 101 working as a STEM. With a point-cathode, and using condensor I and the objective lens as a demagnifying system, an electron probe with a half-width ob about 25 Å and a typical current of 5.10-11 amp at 100 kV can be obtained in the back focal plane of the objective lens.


Author(s):  
Huang Min ◽  
P.S. Flora ◽  
C.J. Harland ◽  
J.A. Venables

A cylindrical mirror analyser (CMA) has been built with a parallel recording detection system. It is being used for angular resolved electron spectroscopy (ARES) within a SEM. The CMA has been optimised for imaging applications; the inner cylinder contains a magnetically focused and scanned, 30kV, SEM electron-optical column. The CMA has a large inner radius (50.8mm) and a large collection solid angle (Ω > 1sterad). An energy resolution (ΔE/E) of 1-2% has been achieved. The design and performance of the combination SEM/CMA instrument has been described previously and the CMA and detector system has been used for low voltage electron spectroscopy. Here we discuss the use of the CMA for ARES and present some preliminary results.The CMA has been designed for an axis-to-ring focus and uses an annular type detector. This detector consists of a channel-plate/YAG/mirror assembly which is optically coupled to either a photomultiplier for spectroscopy or a TV camera for parallel detection.


Author(s):  
Joe A. Mascorro ◽  
Gerald S. Kirby

Embedding media based upon an epoxy resin of choice and the acid anhydrides dodecenyl succinic anhydride (DDSA), nadic methyl anhydride (NMA), and catalyzed by the tertiary amine 2,4,6-Tri(dimethylaminomethyl) phenol (DMP-30) are widely used in biological electron microscopy. These media possess a viscosity character that can impair tissue infiltration, particularly if original Epon 812 is utilized as the base resin. Other resins that are considerably less viscous than Epon 812 now are available as replacements. Likewise, nonenyl succinic anhydride (NSA) and dimethylaminoethanol (DMAE) are more fluid than their counterparts DDSA and DMP- 30 commonly used in earlier formulations. This work utilizes novel epoxy and anhydride combinations in order to produce embedding media with desirable flow rate and viscosity parameters that, in turn, would allow the medium to optimally infiltrate tissues. Specifically, embeding media based on EmBed 812 or LX 112 with NSA (in place of DDSA) and DMAE (replacing DMP-30), with NMA remaining constant, are formulated and offered as alternatives for routine biological work.Individual epoxy resins (Table I) or complete embedding media (Tables II-III) were tested for flow rate and viscosity. The novel media were further examined for their ability to infilftrate tissues, polymerize, sectioning and staining character, as well as strength and stability to the electron beam and column vacuum. For physical comparisons, a volume (9 ml) of either resin or media was aspirated into a capillary viscocimeter oriented vertically. The material was then allowed to flow out freely under the influence of gravity and the flow time necessary for the volume to exit was recored (Col B,C; Tables). In addition, the volume flow rate (ml flowing/second; Col D, Tables) was measured. Viscosity (n) could then be determined by using the Hagen-Poiseville relation for laminar flow, n = c.p/Q, where c = a geometric constant from an instrument calibration with water, p = mass density, and Q = volume flow rate. Mass weight and density of the materials were determined as well (Col F,G; Tables). Infiltration schedules utilized were short (1/2 hr 1:1, 3 hrs full resin), intermediate (1/2 hr 1:1, 6 hrs full resin) , or long (1/2 hr 1:1, 6 hrs full resin) in total time. Polymerization schedules ranging from 15 hrs (overnight) through 24, 36, or 48 hrs were tested. Sections demonstrating gold interference colors were collected on unsupported 200- 300 mesh grids and stained sequentially with uranyl acetate and lead citrate.


Sign in / Sign up

Export Citation Format

Share Document