A Service Oriented Architecture based Comprehensive Smart Calendar for scheduling and managing real-time events

Author(s):  
Ahmad Raza Khan ◽  
Omar Hamad Alatiyyah ◽  
Khalid Abdulaziz Aljadaan
2012 ◽  
Vol 92 (4) ◽  
pp. 63-78
Author(s):  
Dubravka Sladic ◽  
Milan Vrtunski ◽  
Ivan Alargic ◽  
Aleksandra Ristic ◽  
Dusan Petrovacki

The paper presents the implementation of geoportal for landslide monitoring which which includes two subsystems: a system for acquisition, storage and distribution of data on landslides and real time alert system. System for acquisition, storage and distribution of data on landslides include raster and vector spatial data on landslides affected areas, as well as metadata. Alert system in real time is associated with a sensor for detecting displacement, which performs constant measurements and signals in case of exceeding the reference value. The system was developed in accordance with the standards in the field of GIS: ISO 19100 series of standards and OpenGIS Consortium and is based on service-oriented architecture and principles of spatial data infrastructures.


Author(s):  
Randall E. Duran ◽  
Anh Duc Do

System architectures that deliver real-time services to customers must be flexible, scalable, and support a wide range of communication channels. This chapter presents an architecture that was designed to support multiple delivery channels and was successfully used to implement mobile banking services. The considerations behind the design and the approach used to deliver SMS-based mobile services using service-oriented architecture principles are reviewed and some of the practical challenges that were encountered with the implementation are explored. The ability for this solution architecture to support other real-time service channels is also examined.


Author(s):  
S. Hasani ◽  
A. Sadeghi-Niaraki ◽  
M. Jelokhani-Niaraki

In today's world, the necessity for spatial data for various organizations is becoming so crucial that many of these organizations have begun to produce spatial data for that purpose. In some circumstances, the need to obtain real time integrated data requires sustainable mechanism to process real-time integration. Case in point, the disater management situations that requires obtaining real time data from various sources of information. One of the problematic challenges in the mentioned situation is the high degree of heterogeneity between different organizations data. To solve this issue, we introduce an ontology-based method to provide sharing and integration capabilities for the existing databases. In addition to resolving semantic heterogeneity, better access to information is also provided by our proposed method. Our approach is consisted of three steps, the first step is identification of the object in a relational database, then the semantic relationships between them are modelled and subsequently, the ontology of each database is created. In a second step, the relative ontology will be inserted into the database and the relationship of each class of ontology will be inserted into the new created column in database tables. Last step is consisted of a platform based on service-oriented architecture, which allows integration of data. This is done by using the concept of ontology mapping. The proposed approach, in addition to being fast and low cost, makes the process of data integration easy and the data remains unchanged and thus takes advantage of the legacy application provided.


Author(s):  
Faîçal Felhi ◽  
Jalel Akaichi

Real time impact in many applications is the subject of a recent field of studies in information systems. Web services are a solution for the integration of distributed information systems that are autonomous, heterogeneous and auto adaptable to the context. This impact can resolve many problems in different systems based on Service Oriented Architecture (SOA) and web services. In this paper, the authors are interested in defining an approach to provide the different needs of self-adaptability of SOA to the context based on workflow, define the real time goal in their approach and show the feasibility and performance evaluation of their approach in an ambulance trajectory case study.


2009 ◽  
Vol 5 (3) ◽  
pp. 267-277 ◽  
Author(s):  
T. Cucinotta ◽  
A. Mancina ◽  
G.F. Anastasi ◽  
G. Lipari ◽  
L. Mangeruca ◽  
...  

Author(s):  
Nikhil Chaudhari

Elasticsearch has become an attractive open-source search and analytics engine for use cases such as log analytics, click stream analytics and real-time application monitoring. As a service, Elasticsearch is made available by Amazon Web services, Searchly.com, Bonsai and many other websites as a hosted engine. This hosted Elasticsearch service is known as Elastic Cloud. The aim of AWS (Amazon Web Services) is to provide Elasticsearch as a service to users. These web services can implement Service-oriented Architecture. In the following chapter Potential Reach is aggregated using the server. Potential Reach is a metric that indicates the reach of an online activity like tweet or comment. This number helps media marketers track the success of the brand or company.


Author(s):  
Pethuru Raj Chelliah

Hydrology is an increasingly data-intensive discipline and the key contribution of existing and emerging information technologies for the hydrology ecosystem is to smartly transform the water-specific data to information and to knowledge that can be easily picked up and used by various stakeholders and automated decision engines in order to forecast and forewarn the things to unfold. Attaining actionable and realistic insights in real-time dynamically out of both flowing as well as persisting data mountain is the primary goal for the aquatic industry. There are several promising technologies, processes, and products for facilitating this grand yet challenging objective. Business intelligence (BI) is the mainstream IT discipline representing a staggering variety of data transformation and synchronization, information extraction and knowledge engineering techniques. Another paradigm shift is the overwhelming adoption of service oriented architecture (SOA), which is a simplifying mechanism for effectively designing complex and mission-critical enterprise systems. Incidentally there is a cool convergence between the BI and SOA concepts. This is the stimulating foundation for the influential emergence of service oriented business intelligence (SOBI) paradigm, which is aptly recognized as the next-generation BI method. These improvisations deriving out of technological convergence and cluster calmly pervade to the ever-shining water industry too. That is, the bubbling synergy between service orientation and aquatic intelligence empowers the aquatic ecosystem significantly in extracting actionable insights from distributed and diverse data sources in real time through a host of robust and resilient infrastructures and practices. The realisable inputs and information being drawn from water-related data heap contribute enormously in achieving more with less and to guarantee enhanced safety and security for total human society. Especially as the green movement is taking shape across the globe, there is a definite push from different quarters on water and ecology professionals to contribute their mite immensely and immediately in permanently arresting the ecological degradation. In this chapter, we have set the context by incorporating some case studies that detail how SOA has been a tangible enabler of hydroinformatics. Further down, we have proceeded by explaining how SOA-sponsored integration concepts contribute towards integrating different data for creating unified and synchronized views and to put the solid and stimulating base for quickly deriving incisive and decisive insights in the form of hidden patterns, predictions, trends, associations, tips, etc. from the integrated and composite data. This enables real-time planning of appropriate countermeasures, tactics as well as strategies to put the derived in faster activation and actuation modes. Finally the idea is to close this chapter with an overview of how SOA celebrates in establishing adaptive, on-demand and versatile SOHI platforms. SOA is insisted as the chief technique for developing and deploying agile, adaptive, and on-demand hydrology intelligence platforms as a collection of interoperable, reusable, composable, and granular hydrology and technical services. The final section illustrates the reference architecture for the proposed SOHI platform.


Sign in / Sign up

Export Citation Format

Share Document