Envisioning the Paradigm of Service Oriented Hydrology Intelligence (SOHI)

Author(s):  
Pethuru Raj Chelliah

Hydrology is an increasingly data-intensive discipline and the key contribution of existing and emerging information technologies for the hydrology ecosystem is to smartly transform the water-specific data to information and to knowledge that can be easily picked up and used by various stakeholders and automated decision engines in order to forecast and forewarn the things to unfold. Attaining actionable and realistic insights in real-time dynamically out of both flowing as well as persisting data mountain is the primary goal for the aquatic industry. There are several promising technologies, processes, and products for facilitating this grand yet challenging objective. Business intelligence (BI) is the mainstream IT discipline representing a staggering variety of data transformation and synchronization, information extraction and knowledge engineering techniques. Another paradigm shift is the overwhelming adoption of service oriented architecture (SOA), which is a simplifying mechanism for effectively designing complex and mission-critical enterprise systems. Incidentally there is a cool convergence between the BI and SOA concepts. This is the stimulating foundation for the influential emergence of service oriented business intelligence (SOBI) paradigm, which is aptly recognized as the next-generation BI method. These improvisations deriving out of technological convergence and cluster calmly pervade to the ever-shining water industry too. That is, the bubbling synergy between service orientation and aquatic intelligence empowers the aquatic ecosystem significantly in extracting actionable insights from distributed and diverse data sources in real time through a host of robust and resilient infrastructures and practices. The realisable inputs and information being drawn from water-related data heap contribute enormously in achieving more with less and to guarantee enhanced safety and security for total human society. Especially as the green movement is taking shape across the globe, there is a definite push from different quarters on water and ecology professionals to contribute their mite immensely and immediately in permanently arresting the ecological degradation. In this chapter, we have set the context by incorporating some case studies that detail how SOA has been a tangible enabler of hydroinformatics. Further down, we have proceeded by explaining how SOA-sponsored integration concepts contribute towards integrating different data for creating unified and synchronized views and to put the solid and stimulating base for quickly deriving incisive and decisive insights in the form of hidden patterns, predictions, trends, associations, tips, etc. from the integrated and composite data. This enables real-time planning of appropriate countermeasures, tactics as well as strategies to put the derived in faster activation and actuation modes. Finally the idea is to close this chapter with an overview of how SOA celebrates in establishing adaptive, on-demand and versatile SOHI platforms. SOA is insisted as the chief technique for developing and deploying agile, adaptive, and on-demand hydrology intelligence platforms as a collection of interoperable, reusable, composable, and granular hydrology and technical services. The final section illustrates the reference architecture for the proposed SOHI platform.

2011 ◽  
pp. 1610-1636
Author(s):  
Pethuru Raj Chelliah

Hydrology is an increasingly data-intensive discipline and the key contribution of existing and emerging information technologies for the hydrology ecosystem is to smartly transform the water-specific data to information and to knowledge that can be easily picked up and used by various stakeholders and automated decision engines in order to forecast and forewarn the things to unfold. Attaining actionable and realistic insights in real-time dynamically out of both flowing as well as persisting data mountain is the primary goal for the aquatic industry. There are several promising technologies, processes, and products for facilitating this grand yet challenging objective. Business intelligence (BI) is the mainstream IT discipline representing a staggering variety of data transformation and synchronization, information extraction and knowledge engineering techniques. Another paradigm shift is the overwhelming adoption of service oriented architecture (SOA), which is a simplifying mechanism for effectively designing complex and mission-critical enterprise systems. Incidentally there is a cool convergence between the BI and SOA concepts. This is the stimulating foundation for the influential emergence of service oriented business intelligence (SOBI) paradigm, which is aptly recognized as the next-generation BI method. These improvisations deriving out of technological convergence and cluster calmly pervade to the ever-shining water industry too. That is, the bubbling synergy between service orientation and aquatic intelligence empowers the aquatic ecosystem significantly in extracting actionable insights from distributed and diverse data sources in real time through a host of robust and resilient infrastructures and practices. The realisable inputs and information being drawn from water-related data heap contribute enormously in achieving more with less and to guarantee enhanced safety and security for total human society. Especially as the green movement is taking shape across the globe, there is a definite push from different quarters on water and ecology professionals to contribute their mite immensely and immediately in permanently arresting the ecological degradation. In this chapter, we have set the context by incorporating some case studies that detail how SOA has been a tangible enabler of hydroinformatics. Further down, we have proceeded by explaining how SOA-sponsored integration concepts contribute towards integrating different data for creating unified and synchronized views and to put the solid and stimulating base for quickly deriving incisive and decisive insights in the form of hidden patterns, predictions, trends, associations, tips, etc. from the integrated and composite data. This enables real-time planning of appropriate countermeasures, tactics as well as strategies to put the derived in faster activation and actuation modes. Finally the idea is to close this chapter with an overview of how SOA celebrates in establishing adaptive, on-demand and versatile SOHI platforms. SOA is insisted as the chief technique for developing and deploying agile, adaptive, and on-demand hydrology intelligence platforms as a collection of interoperable, reusable, composable, and granular hydrology and technical services. The final section illustrates the reference architecture for the proposed SOHI platform.


2012 ◽  
Vol 92 (4) ◽  
pp. 63-78
Author(s):  
Dubravka Sladic ◽  
Milan Vrtunski ◽  
Ivan Alargic ◽  
Aleksandra Ristic ◽  
Dusan Petrovacki

The paper presents the implementation of geoportal for landslide monitoring which which includes two subsystems: a system for acquisition, storage and distribution of data on landslides and real time alert system. System for acquisition, storage and distribution of data on landslides include raster and vector spatial data on landslides affected areas, as well as metadata. Alert system in real time is associated with a sensor for detecting displacement, which performs constant measurements and signals in case of exceeding the reference value. The system was developed in accordance with the standards in the field of GIS: ISO 19100 series of standards and OpenGIS Consortium and is based on service-oriented architecture and principles of spatial data infrastructures.


2011 ◽  
Vol 48-49 ◽  
pp. 1002-1005
Author(s):  
Hui Ping Lin ◽  
Xu Wei Zhu ◽  
Wei Ping Li ◽  
Li Liu ◽  
Zhao Hui Xie

This paper presents a supply chain collaboration service (SCCS) in SaaS paradigm to support inter-organization interaction between business partners. SaaS is very attractive to enterprises because it offers low cost and flexible on-demand IT solution. The paper presents an extensible service oriented architecture that can integrate business application as a service into SCCS. In order to improve the supply chain performance, it provides flexible support for information sharing between business partners. The SCCS prototype has been developed.


Author(s):  
Randall E. Duran ◽  
Anh Duc Do

System architectures that deliver real-time services to customers must be flexible, scalable, and support a wide range of communication channels. This chapter presents an architecture that was designed to support multiple delivery channels and was successfully used to implement mobile banking services. The considerations behind the design and the approach used to deliver SMS-based mobile services using service-oriented architecture principles are reviewed and some of the practical challenges that were encountered with the implementation are explored. The ability for this solution architecture to support other real-time service channels is also examined.


Author(s):  
Katarina Grolinger ◽  
Emna Mezghani ◽  
Miriam A. M. Capretz ◽  
Ernesto Exposito

Decision-making in disaster management requires information gathering, sharing, and integration by means of collaboration on a global scale and across governments, industries, and communities. Large volume of heterogeneous data is available; however, current data management solutions offer few or no integration capabilities and limited potential for collaboration. Moreover, recent advances in NoSQL, cloud computing, and Big Data open the door for new solutions in disaster data management. This chapter presents a Knowledge as a Service (KaaS) framework for disaster cloud data management (Disaster-CDM), with the objectives of facilitating information gathering and sharing; storing large amounts of disaster-related data; and facilitating search and supporting interoperability and integration. In the Disaster-CDM approach NoSQL data stores provide storage reliability and scalability while service-oriented architecture achieves flexibility and extensibility. The contribution of Disaster-CDM is demonstrated by integration capabilities, on examples of full-text search and querying services.


Author(s):  
Nenad Stefanovic ◽  
Dusan Stefanovic ◽  
Bozidar Radenkovic

As supply chains are growing increasingly complex, from linear arrangements to interconnected, multi-echelon, collaborative networks of companies, there is much more information that needs to be stored and analyzed than there was just a few years ago. Today, there are variety of business initiatives and technologies such as joint planning and execution, business intelligence, performance management, data mining and alerting that can be used for more efficient supply chain management. However, organizations still lack methods, processes and tools to successfully design and implement these systems. In this chapter, the authors present the integrated supply chain intelligence (SCI) system that enables collaborative planning and decision making through web-based analytics and process monitoring. The system is process based and utilizes business intelligence and Internet technologies. Multi-layered and service-oriented architecture enables composition of the new breed of SCI applications. They describe main elements and capabilities of the system, its advantages over existing systems and also discuss future research trends and opportunities.


Author(s):  
Olga Levina ◽  
Vladimir Stantchev

E-Business research and practice can be situated on following multiple levels: applications, technological issues, support and implementation (Ngai and Wat 2002). Here we consider technological components for realizing business processes and discuss their foundation architecture for technological enabling. The article provides an introduction to the terms, techniques and realization issues for eventdriven and service-oriented architectures. We begin with a definition of terms and propose a reference architecture for an event-driven service-oriented architecture (EDSOA). Possible applications in the area of E-Business and solution guidelines are considered in the second part of the article. Service-oriented Architectures (SOA) have gained momentum since their introduction in the last years. Seen as an approach to integrate heterogeneous applications within an enterprise architecture they are also used to design flexible and adaptable business processes. An SOA is designed as a distributed system architecture providing a good integration possibility of already existing application systems. Furthermore, SOA is mostly suitable for complex and large system landscapes.


Sign in / Sign up

Export Citation Format

Share Document