Study of electronic structure and conductivity of Nb-doped SrTiO3 by density function theory

Author(s):  
Jiangni Yun ◽  
Zhiyong Zhang ◽  
Fuchun Zhang ◽  
Wu Zhao
2020 ◽  
Vol 20 (3) ◽  
pp. 1651-1659 ◽  
Author(s):  
Hongmei Zhu ◽  
Zhengjie Zhang ◽  
Xuchuan Jiang

Density function theory (DFT) method was developed and applied for fundamentally understanding the doping effect of various metals (Al, Ti and Cr) on vanadium dioxide (VO2). The substitution doping of Al, Ti and Cr in VO2 could lead to significant changes in electronic structure, band gap and optical property. Different from physical experiments, the DFT method could be utilized for fundamental understandings at an atomic scale. It was found via DFT calculations that: (i) Al doping caused a slightly distorted octahedron in monoclinic VO2(M), and narrowed the band gap of VO2(M) due to the upward shift of the valence band (VB), while Cr doping narrowed the band gap because of the downward shift of the conduction band (CB); (ii) Ti doping slightly widened the band gap of VO2(M); and (iii) the optical reflectivity of VO2(M) decreased after substitution doping low-valent metals (e.g., Al). This study will be beneficial for designing and controlling elemental doping to obtain metal oxide nanocomposites with unique band gap and electronic structure for thermochromic energy saving applications.


2017 ◽  
Vol 727 ◽  
pp. 712-717
Author(s):  
Yuan Jiang Zhu ◽  
Yun Liang Gao

In this paper, lattice constants, elastic properties and electronic structure of δ-Pu are investigated by means of plane wave pseudo-potential method (PWP) based on density function theory (DFT). A variety of density functional theory methods have been adopted to calculate the crystal structure and elastic property of δ-Pu, and it is found that the lattice constants, bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν calculated by spin polarization local density approximation (SP+LDA) method are in best agreement with experimental values. The electronic structure have been investigated within the framework of LDA+U, and the band structure, density of state (DOS) and partial density of state (PDOS) are calculated. Calculation results of elastic properties and electronic structure show that, δ-Pu shows obvious metallicity and well ductility, its electrons are strongly corrected and the DOS in the vicinity of the Fermi Level is mainly contributed by 5f electrons.


2012 ◽  
Vol 516-517 ◽  
pp. 1889-1892 ◽  
Author(s):  
Xiu Rong Zhang ◽  
Lin Yin ◽  
Wei Jun Li ◽  
Hui Shuai Tang

The geometric structures of PtNN0,± clusters are optimized by the B3LYP/LANL2DZ method of density function theory, the ground state structures are obtained, and the electronic structure are studied. The results show: the N atoms gain the charge when the clusters are formed, but some Pt atoms gain the charge and other Pt atoms lose the charge. N atom and Pt atom have internal heterozygous, and the spd hybridized between Pt atoms and N atoms are increasing with cluster s’ sizes.


2014 ◽  
Vol 492 ◽  
pp. 273-275
Author(s):  
Zhi Huan Lan ◽  
Man Yi Hou ◽  
Hong Yan Wang ◽  
Yi Guo Ji

The electronic structure of ZnO is calculated by using an accurate full-potential linear plane-wave based on the density function theory and WIN2K package. The curves of energy band and density of states of ZnO are gained. The energy gap is 0.9eV that is better some of the computed results by theory approaches and smaller than the experimental value obtained by X spectra. After analyzing it is known that the coulomb repulsion between 3d state of Zn and 2p state of O is very strong leading to the increase in the energy of O2p and the energy gap become smaller.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Madhumita Hazra ◽  
Tanushree Dolai ◽  
Akhil Pandey ◽  
Subrata Kumar Dey ◽  
Animesh Patra

The photo physical properties of two mononuclear pentacoordinated copper(II) complexes formulated as [Cu(L)(Cl)(H2O)] (1) and [Cu(L)(Br)(H2O)] (2)HL = (1-[(3-methyl-pyridine-2-ylimino)-methyl]-naphthalen-2-ol) were synthesized and characterized by elemental, physicochemical, and spectroscopic methods. The density function theory calculations are used to investigate the electronic structures and the electronic properties of ligand and complex. The interactions of copper(II) complexes towards calf thymus DNA were examined with the help of absorption, viscosity, and fluorescence spectroscopic techniques at pH 7.40. All spectroscopy's result indicates that complexes show good binding activity to calf thymus DNA through groove binding. The optical absorption and fluorescence emission properties of microwires were characterized by fluorescence microscope. From a spectroscopic viewpoint, all compounds strongly emit green light in the solid state. The microscopy investigation suggested that microwires exhibited optical waveguide behaviour which are applicable as fluorescent nanomaterials and can be used as building blocks for miniaturized photonic devices. Antibacterial study reveals that complexes are better antimicrobial agents than free Schiff base due to bacterial cell penetration by chelation. Moreover, the antioxidant study of the ligand and complexes is evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free-radical assays, which demonstrate that the complexes are of higher antioxidant activity than free ligand.


2011 ◽  
Vol 221 ◽  
pp. 180-183 ◽  
Author(s):  
Jian Li ◽  
Xun Zhang Yu ◽  
Kai Zhang

The ring-opening reaction between bisphenol A and epichlorohydrin was calculated by Gaussian03. The Density Function Theory (DFT) method were employed to study the geometry structures of bisphenol A and epichlorohydrin and the product was obtained on the base of B3LYP/6-31G+ model in this paper. The transitional states (Ts1, Ts2) during the ring-opening process were found by TS method and the energy changing of the system was proved by IRC calculation. Results showed that the energy reduced by 64.37726kJ/mol during the ring-opening process. The product was confirmed to be thermodynamically stable.


Sign in / Sign up

Export Citation Format

Share Document