Signal Integrity in High Speed 3D IC Design- A Case Study

Author(s):  
Shadi MS Harb ◽  
William Eisenstadt
Keyword(s):  
Author(s):  
Gracia Nirmala Rani D. ◽  
J. Shanthi ◽  
S. Rajaram

The importance and growth of the digital IC have become more popular because of parameters such as small feature size, high speed, low cost, less power consumption, and temperature. There have been various techniques and methodologies developed so far using different optimization algorithms and data structures based on the dimensions of the IC to improve these parameters. All these existing algorithms illustrate explicit advantages in optimizing the chip area, maximum temperature of the chip, and wire length. Though there are some advantages in these traditional algorithms, there are few demerits such as execution time, integration, and computational complexity due to the necessity of handling large number of data. Machine learning techniques produce vibrant results in such fields where it is required to handle big data in order to optimize the scaling parameters of IC design. The objective of this chapter is to give an elaborate idea of applying machine learning techniques using Bayesian theorem to create automation tool for VLSI 3D IC design steps.


Author(s):  
Hyunsuk Lee ◽  
Heegon Kim ◽  
Sumin Choi ◽  
Dong-Hyun Kim ◽  
Kyungjun Cho ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (3) ◽  
pp. 1505
Author(s):  
Ignacio Menéndez Pidal ◽  
Jose Antonio Mancebo Piqueras ◽  
Eugenio Sanz Pérez ◽  
Clemente Sáenz Sanz

Many of the large number of underground works constructed or under construction in recent years are in unfavorable terrains facing unusual situations and construction conditions. This is the case of the subject under study in this paper: a tunnel excavated in evaporitic rocks that experienced significant karstification problems very quickly over time. As a result of this situation, the causes that may underlie this rapid karstification are investigated and a novel methodology is presented in civil engineering where the use of saturation indices for the different mineral specimens present has been crucial. The drainage of the rock massif of El Regajal (Madrid-Toledo, Spain, in the Madrid-Valencia high-speed train line) was studied and permitted the in-situ study of the hydrogeochemical evolution of water flow in the Miocene evaporitic materials of the Tajo Basin as a full-scale testing laboratory, that are conforms as a whole, a single aquifer. The work provides a novel methodology based on the calculation of activities through the hydrogeochemical study of water samples in different piezometers, estimating the saturation index of different saline materials and the dissolution capacity of the brine, which is surprisingly very high despite the high electrical conductivity. The circulating brine appears unsaturated with respect to thenardite, mirabilite, epsomite, glauberite, and halite. The alteration of the underground flow and the consequent renewal of the water of the aquifer by the infiltration water of rain and irrigation is the cause of the hydrogeochemical imbalance and the modification of the characteristics of the massif. These modifications include very important loss of material by dissolution, altering the resistance of the terrain and the increase of the porosity. Simultaneously, different expansive and recrystallization processes that decrease the porosity of the massif were identified in the present work. The hydrogeochemical study allows the evolution of these phenomena to be followed over time, and this, in turn, may facilitate the implementation of preventive works in civil engineering.


2012 ◽  
Vol 195 ◽  
pp. 128-131 ◽  
Author(s):  
Hun Hee Lee ◽  
Min Sang Yun ◽  
Hyun Wook Lee ◽  
Jin Goo Park

As the feature size of semiconductor device shrinks continuously, various high-K metals for 3-D structures have been applied to improve the device performance, such as high speed and low power consumption. Metal gate fabrication requires the removal of metal and polymer residues after etching process without causing any undesired etching and corrosion of metals. The conventional sulfuric-peroxide mixture (SPM) has many disadvantages like the corrosion of metals, environmental issues etc., DSP+(dilute sulfuric-peroxide-HF mixture) chemical is currently used for the removal of post etch residues on device surface, to replace the conventional SPM cleaning [. Due to the increased usage of metal gate in devices in recent times, the application of DSP+chemicals for cleaning processes also increases [.


Sign in / Sign up

Export Citation Format

Share Document