Efficient determination of thresholds via importance sampling for Monte Carlo evaluation of radar performance in non-Gaussian clutter

Author(s):  
D.L. Stadelman ◽  
D.D. Weiner ◽  
A.D. Keckler
Genetics ◽  
2000 ◽  
Vol 156 (4) ◽  
pp. 2109-2118 ◽  
Author(s):  
Eric C Anderson ◽  
Ellen G Williamson ◽  
Elizabeth A Thompson

Abstract A population’s effective size is an important quantity for conservation and management. The effective size may be estimated from the change of allele frequencies observed in temporally spaced genetic samples taken from the population. Though moment-based estimators exist, recently Williamson and Slatkin demonstrated the advantages of a maximum-likelihood approach that they applied to data on diallelic genetic markers. Their computational methods, however, do not extend to data on multiallelic markers, because in such cases exact evaluation of the likelihood is impossible, requiring an intractable sum over latent variables. We present a Monte Carlo approach to compute the likelihood with data on multiallelic markers. So as to be computationally efficient, our approach relies on an importance-sampling distribution constructed by a forward-backward method. We describe the Monte Carlo formulation and the importance-sampling function and then demonstrate their use on both simulated and real datasets.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


2021 ◽  
Vol 11 (9) ◽  
pp. 3871
Author(s):  
Jérôme Morio ◽  
Baptiste Levasseur ◽  
Sylvain Bertrand

This paper addresses the estimation of accurate extreme ground impact footprints and probabilistic maps due to a total loss of control of fixed-wing unmanned aerial vehicles after a main engine failure. In this paper, we focus on the ground impact footprints that contains 95%, 99% and 99.9% of the drone impacts. These regions are defined here with density minimum volume sets and may be estimated by Monte Carlo methods. As Monte Carlo approaches lead to an underestimation of extreme ground impact footprints, we consider in this article multiple importance sampling to evaluate them. Then, we perform a reliability oriented sensitivity analysis, to estimate the most influential uncertain parameters on the ground impact position. We show the results of these estimations on a realistic drone flight scenario.


2021 ◽  
pp. 1-14
Author(s):  
Tiffany M. Shader ◽  
Theodore P. Beauchaine

Abstract Growth mixture modeling (GMM) and its variants, which group individuals based on similar longitudinal growth trajectories, are quite popular in developmental and clinical science. However, research addressing the validity of GMM-identified latent subgroupings is limited. This Monte Carlo simulation tests the efficiency of GMM in identifying known subgroups (k = 1–4) across various combinations of distributional characteristics, including skew, kurtosis, sample size, intercept effect size, patterns of growth (none, linear, quadratic, exponential), and proportions of observations within each group. In total, 1,955 combinations of distributional parameters were examined, each with 1,000 replications (1,955,000 simulations). Using standard fit indices, GMM often identified the wrong number of groups. When one group was simulated with varying skew and kurtosis, GMM often identified multiple groups. When two groups were simulated, GMM performed well only when one group had steep growth (whether linear, quadratic, or exponential). When three to four groups were simulated, GMM was effective primarily when intercept effect sizes and sample sizes were large, an uncommon state of affairs in real-world applications. When conditions were less ideal, GMM often underestimated the correct number of groups when the true number was between two and four. Results suggest caution in interpreting GMM results, which sometimes get reified in the literature.


Sign in / Sign up

Export Citation Format

Share Document