spectrum shaping
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 24)

H-INDEX

19
(FIVE YEARS 1)

Author(s):  
Yusuke Arashida ◽  
Atsushi Taninaka ◽  
Takayuki Ochiai ◽  
Hiroyuki Mogi ◽  
Shoji YOSHIDA ◽  
...  

Abstract We have developed a multiplex Coherent anti-Stokes Raman scattering (CARS) microscope effective for low-wavenumber measurement by combining a high-repetition supercontinuum light source of 1064 nm and an infrared high-sensitivity InGaAs diode array. This system could observe the low-wavenumber region down to 55 cm-1 with high sensitivity. In addition, using spectrum shaping and spectrum modulation techniques, we simultaneously realized a wide bandwidth (<1800 cm-1), high wavenumber resolution (9 cm-1), high efficiency, and increasing signal to noise ratio by reducing the effect of the background shape in low-wavenumber region. Spatial variation of a sulfur crystal phase transition with metastable states was visualized.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 260
Author(s):  
Yuting Huang ◽  
Jiangbing Du ◽  
Yufeng Chen ◽  
Ke Xu ◽  
Zuyuan He

Distributed Raman amplifier (DRA) has been widely studied in recent decades because of its low noise figure and flexible gain. In this paper, we present a novel scheme of DRA with broadband amplified spontaneous emission(ASE) source as pump instead of discrete pump lasers. The broadband pump is optimized by machine learning based inverse design and shaped by programmable waveshaper, so as to realize the ultrafine, dynamic and arbitrary gain spectrum shaping of Raman amplification. For the target of flat gain spectrum, the maximum gain flatness of 0.1086 dB is realized based on the simulation results. For the target of arbitrary gain spectrum, we demonstrate four gain profiles with maximum root mean square error (RMSE) of 0.074 dB. To further measure the performance of arbitrary gain spectrum optimization, the probability density functions (PDF) of RMSE and Errormax are presented. Meanwhile, the numeral relationship between the bands of broadband pump and signal is also explored. Furthermore, this work has great application potential to compensate the gain distortion or dynamic change caused by other devices in communication systems.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1860
Author(s):  
Octavian Danila

We report theoretical investigations performed in the terahertz G-band, in the 228–232 GHz spectral window for a piezoelectrically-responsive ring-cone element metasurface composed of polyvinylidene fluoride (PVDF)/Silicon and PVDF/Silica glass. The choosing of this spectral window is motivated by a multitude of applications in terahertz detection and terahertz imaging, that commonly make use of this band. The uniqueness of the envisioned architecture resides in the combination between the readily-available polyvinylidene fluoride polymer and silicon/silica glass substrates, together with the introduction of an extra degree of freedom, in the form of a ring-cone architecture , and the active control of the geometric sizes through the longitudinal piezoelectric effect exhibited by the polymer. The spectral response of the metasurface is dependent on the combination between the polymer elements and the substrate, and ranges from near-zero absorption switching to a resonant behavior and significant absorption. The interaction between the electromagnetic field and the polymer-based metasurface also modifies the phase of the reflected and transmitted waves over a full 2π range, permitting complete control of the electric field polarization. Moreover, we take advantage of the longitudinal piezoelectric effect of PVDF and analyze the spectrum shaping capability of the polymer-based metasurface. Our analysis highlights the capability of the proposed architecture to achieve complete electric field polarization control, near-zero optical switching and resonant behavior, depending on the geometries and sizes of the architecture elements resulting from construction considerations and from the externally applied voltages through the piezoelectric effect.


Sign in / Sign up

Export Citation Format

Share Document