Obtaining absolute water velocity profiles from glider-mounted Acoustic Doppler Current Profilers

Author(s):  
Christopher E. Ordonez ◽  
R. Kipp Shearman ◽  
John A. Barth ◽  
Patrick Welch ◽  
Anatoli Erofeev ◽  
...  
2018 ◽  
Vol 35 (8) ◽  
pp. 1665-1673 ◽  
Author(s):  
Daniel L. Rudnick ◽  
Jeffrey T. Sherman ◽  
Alexander P. Wu

AbstractThe depth-average velocity is routinely calculated using data from underwater gliders. The calculation is a dead reckoning, where the difference between the glider’s velocity over ground and its velocity through water yields the water velocity averaged over the glider’s dive path. Given the accuracy of global positioning system navigation and the typical 3–6-h dive cycle, the accuracy of the depth-average velocity is overwhelmingly dependent on the accurate estimation of the glider’s velocity through water. The calculation of glider velocity through water for the Spray underwater glider is described. The accuracy of this calculation is addressed using a method similar to that used with shipboard acoustic Doppler current profilers, where water velocity is compared before and after turns to determine a gain to apply to glider velocity through water. Differences of this gain from an ideal value of one are used to evaluate accuracy. Sustained glider observations of several years off California and Palau consisted of missions involving repeated straight sections, producing hundreds of turns. The root-mean-square accuracy of depth-average velocity is estimated to be in the range of 0.01–0.02 m s−1, consistent with inferences from the early days of underwater glider design.


2014 ◽  
Vol 40 ◽  
pp. 50-57 ◽  
Author(s):  
Ronald J. Lynn ◽  
Igor V. Haljasmaa ◽  
Frank Shaffer ◽  
Robert P. Warzinski ◽  
Jonathan S. Levine

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xiang Li ◽  
Sai Xu ◽  
Youzhi Hao ◽  
Daolun Li ◽  
Detang Lu ◽  
...  

Based on the results of molecular dynamics simulation, in a gas-water miscible zone, the velocity profiles of the flowing water film do not increase monotonously but increase first and then decrease, which is due to the interaction between water and gas molecules. This exhibits a new physical mechanism. In this paper, we firstly propose a gas-water flow model that takes into account the new physical phenomena and describes the distribution of gas-water velocity in the whole pore more accurately. In this model, a decreasing factor for water film in the gas-water miscible zone is used to describe the decrease of water velocity in the gas-water miscible zone, which leads to the gas velocity decrease correspondingly. The new flow model considers the interaction among gas and water molecules in the miscible zone and can provide more accurate velocity profiles compared with the flow models not considering the miscible region. Comparison calculation shows that the previous model overestimates the flow velocity, and the overestimation increases with the decrease of the pore radius. Based on the new gas-water flow model, a new permeability correction factor is deduced to consider the interaction among gas and water molecules.


2010 ◽  
Vol 27 (7) ◽  
pp. 1215-1227 ◽  
Author(s):  
A. M. Thurnherr

Abstract Lowered acoustic Doppler current profilers (LADCPs) are commonly used to measure full-depth velocity profiles in the ocean. Because LADCPs are lowered on hydrographic wires, elaborate data processing is required to remove the effects of instrument motion from the velocity measurements and to transform the resulting relative velocity profiles into a nonmoving reference frame. Two fundamentally different methods are used for this purpose: in the velocity inversion method, a set of linear equations is solved to separate the ocean and instrument velocities while simultaneously applying a combination of velocity-referencing constraints from navigational data, shipboard ADCP measurements, and bottom tracking. In the shear method, a gridded profile of velocity shear, which is not affected by instrument motion, is vertically integrated and referenced using a single constraint. The main goals of the present study consist in estimating the accuracy of LADCP-derived velocity profiles and determining which processing method performs better. To this purpose, 21 LADCP profiles collected during four surveys are compared to velocities measured simultaneously by nearby moored instruments at depths between 2000 and 3000 m. The LADCP data were processed with two slightly different publicly available implementations of the velocity inversion method, as well as with an implementation of the shear method that was extended to support multiple simultaneous velocity-referencing constraints. Regardless of the processing method, the overall rms LADCP velocity errors are <3 cm s−1 as long as multiple velocity-referencing constraints are imposed simultaneously. On the other hand, solutions referenced with a single constraint are associated with significantly greater errors. The two primary instrument characteristics that influence data quality are range and sampling rate. Dependence of the LADCP velocity errors on those two parameters was determined by reprocessing range-limited subsets and temporal subsamples of the LADCP data. Results indicate an approximately linear increase of the velocity errors with decreasing sampling rate. The relationship between velocity errors and instrument range is much less linear and characterized by a steep increase in velocity errors below a limiting range of ≈60 m. To improve the quality of the velocity data by increasing the instrument range, modern LADCP systems often include both upward- and downward-looking ADCPs. The data analyzed here indicate that the addition of a second ADCP can be as effective as doubling the range of a single-head LADCP system. However, in one of the datasets the errors associated with the profiles calculated from combined up- and down-looker data are significantly larger than the corresponding errors associated with the profiles calculated from the down-looker alone. The analyses carried out here indicate that the velocity errors associated with LADCP profiles can be significantly smaller than expected from previously published results and from the uncertainty estimates calculated by the velocity inversion method.


2015 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Yanuar Yanuar ◽  
Kurniawan T. Waskito ◽  
Gunawan Gunawan ◽  
Budiarso Budiarso

Sign in / Sign up

Export Citation Format

Share Document