Using quad trees for parallelizing conflict detection in a sequential simulation

Author(s):  
F. Wireland ◽  
D. Carnes ◽  
G. Schultz
2014 ◽  
Vol 28 (3) ◽  
pp. 124-135 ◽  
Author(s):  
Daniela Czernochowski

Errors can play a major role for optimizing subsequent performance: Response conflict associated with (near) errors signals the need to recruit additional control resources to minimize future conflict. However, so far it remains open whether children and older adults also adjust their performance as a function of preceding response conflict. To examine the life span development of conflict detection and resolution, response conflict was elicited during a task-switching paradigm. Electrophysiological correlates of conflict detection for correct and incorrect responses and behavioral indices of post-error adjustments were assessed while participants in four age groups were asked to focus on either speed or accuracy. Despite difficulties in resolving response conflict, the ability to detect response conflict as indexed by the Ne/ERN component was expected to mature early and be preserved in older adults. As predicted, reliable Ne/ERN peaks were detected across age groups. However, only for adults Ne/ERN amplitudes associated with errors were larger compared to Nc/CRN amplitudes for correct trials under accuracy instructions, suggesting an ongoing maturation in the ability to differentiate levels of response conflict. Behavioral interference costs were considerable in both children and older adults. Performance for children and older adults deteriorated rather than improved following errors, in line with intact conflict detection, but impaired conflict resolution. Thus, participants in all age groups were able to detect response conflict, but only young adults successfully avoided subsequent conflict by up-regulating control.


2021 ◽  
Vol 217 ◽  
pp. 103322
Author(s):  
Eva M. Janssen ◽  
Samuël B. Velinga ◽  
Wim de Neys ◽  
Tamara van Gog

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 368
Author(s):  
Cristina Alegria ◽  
Natália Roque ◽  
Teresa Albuquerque ◽  
Paulo Fernandez ◽  
Maria Margarida Ribeiro

Research Highlights: Modelling species’ distribution and productivity is key to support integrated landscape planning, species’ afforestation, and sustainable forest management. Background and Objectives: Maritime pine (Pinus pinaster Aiton) forests in Portugal were lately affected by wildfires and measures to overcome this situation are needed. The aims of this study were: (1) to model species’ spatial distribution and productivity using a machine learning (ML) regression approach to produce current species’ distribution and productivity maps; (2) to model the species’ spatial productivity using a stochastic sequential simulation approach to produce the species’ current productivity map; (3) to produce the species’ potential distribution map, by using a ML classification approach to define species’ ecological envelope thresholds; and (4) to identify present and future key factors for the species’ afforestation and management. Materials and Methods: Spatial land cover/land use data, inventory, and environmental data (climate, topography, and soil) were used in a coupled ML regression and stochastic sequential simulation approaches to model species’ current and potential distributions and productivity. Results: Maritime pine spatial distribution modelling by the ML approach provided 69% fitting efficiency, while species productivity modelling achieved only 43%. The species’ potential area covered 60% of the country’s area, where 78% of the species’ forest inventory plots (1995) were found. The change in the Maritime pine stands’ age structure observed in the last decades is causing the species’ recovery by natural regeneration to be at risk. Conclusions: The maps produced allow for best site identification for species afforestation, wood production regulation support, landscape planning considering species’ diversity, and fire hazard mitigation. These maps were obtained by modelling using environmental covariates, such as climate attributes, so their projection in future climate change scenarios can be performed.


Sign in / Sign up

Export Citation Format

Share Document