A Hybrid Grey Wolf-Whale Optimization Algorithm for Optimizing SVM in Breast Cancer Diagnosis

Author(s):  
Indu Singh ◽  
Raghav Bansal ◽  
Anchal Gupta ◽  
Ayush Singh
2021 ◽  
pp. 107754632110034
Author(s):  
Ololade O Obadina ◽  
Mohamed A Thaha ◽  
Kaspar Althoefer ◽  
Mohammad H Shaheed

This article presents a novel hybrid algorithm based on the grey-wolf optimizer and whale optimization algorithm, referred here as grey-wolf optimizer–whale optimization algorithm, for the dynamic parametric modelling of a four degree-of-freedom master–slave robot manipulator system. The first part of this work consists of testing the feasibility of the grey-wolf optimizer–whale optimization algorithm by comparing its performance with a grey-wolf optimizer, whale optimization algorithm and particle swarm optimization using 10 benchmark functions. The grey-wolf optimizer–whale optimization algorithm is then used for the model identification of an experimental master–slave robot manipulator system using the autoregressive moving average with exogenous inputs model structure. Obtained results demonstrate that the hybrid algorithm is effective and can be a suitable substitute to solve the parameter identification problem of robot models.


2019 ◽  
Vol 9 (18) ◽  
pp. 3755 ◽  
Author(s):  
Wei Chen ◽  
Haoyuan Hong ◽  
Mahdi Panahi ◽  
Himan Shahabi ◽  
Yi Wang ◽  
...  

The most dangerous landslide disasters always cause serious economic losses and human deaths. The contribution of this work is to present an integrated landslide modelling framework, in which an adaptive neuro-fuzzy inference system (ANFIS) is combined with the two optimization algorithms of whale optimization algorithm (WOA) and grey wolf optimizer (GWO) at Anyuan County, China. It means that WOA and GWO are used as two meta-heuristic algorithms to improve the prediction performance of the ANFIS-based methods. In addition, the step-wise weight assessment ratio analysis (SWARA) method is used to obtain the initial weight of each class of landslide influencing factors. To validate the effectiveness of the proposed framework, 315 landslide events in history were selected for our experiments and were randomly divided into the training and verification sets. To perform landslide susceptibility mapping, fifteen geological, hydrological, geomorphological, land cover, and other factors are considered for the modelling construction. The landslide susceptibility maps by SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-WOA, and SWARA-ANFIS-GWO models are assessed using the measures of the receiver operating characteristic (ROC) curve and root-mean-square error (RMSE). The experiments demonstrated that the obtained results of modelling process from the SWARA to the SAWRA-ANFIS-GWO model were more accurate and that the proposed methods have satisfactory prediction ability. Specifically, prediction accuracy by area under the curve (AUC) of SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-GWO, and SWARA-ANFIS-WOA models were 0.831, 0.831, 0.850, 0.856, and 0.869, respectively. Due to adaptability and usability, the proposed prediction methods can be applied to other areas for landslide management and mitigation as well as prevention throughout the world.


2021 ◽  
pp. 0309524X2110565
Author(s):  
Adel Yahiaoui ◽  
Abdelhalim Tlemçani

This paper focuses on the optimization and operation of the renewable energy power sources for electrification of isolated rural city in Algeria desert. For this purpose, a system composed by photovoltaic (PV), wind turbine (WT), diesel generator (DG), and battery bank (BB) as well as for storing the energy in the electrical form to meet the load. In the present paper we are interested in evolutionary algorithms for solving optimization problem of hybrid renewable energy system. A new meta-heuristic algorithm namely whale optimization algorithm (WOA) is used to solve optimization problem of cost of energy (COE) and total net present cost (TNPC) including reliability evaluation by using basic probabilistic concept in order to find Loss of Power Supply Probability (LPSP). The WOA mimics the social behavior of humpback whales. This algorithm is inspired by the bubble-net hunting strategy. Three recent algorithms, particle swarm optimization (PSO), grey wolf optimizer (GWO), and modified grey wolf optimizer (M-GWO) are also implemented in this work. For examining the accuracy, stability, and robustness of proposed optimization technique two case studies have been tested. The results of simulations and comparison with other methods exhibit high accuracy and validity of the proposed whale optimization algorithm to solve optimization problem of hybrid renewable energy system.


Sign in / Sign up

Export Citation Format

Share Document