Optimised Reference Current Generation For Single-phase Heterogeneous Active Filter

Author(s):  
Saikat Jana ◽  
S. Srinivas
2021 ◽  
Vol 2120 (1) ◽  
pp. 012024
Author(s):  
Siew Ting Chew ◽  
Yap Hoon ◽  
Hafisoh Ahmad

Abstract The study presents a new proposed reference current generation algorithm based on the synchronous reference frame (SRF) conventional algorithm in single-phase power system for an active power filtering. Shunt active power filter (SAPF) is often used as it can mitigate harmonic currents in the AC networks due to its superiority in dynamic-state conditions. The reference current generation algorithm is the most important control algorithms to control SAPF as it has the simplest implementation features. A proposed STF-based fundamental component identifier (STF-FCI) algorithm is implemented for the major improvements such as the removal of the unnecessary cosine function to reduce complexity of algorithm, employment of self-tuning filter (STF) to extract accurate fundamental component and to generate a sinusoidal reference current. The purpose of developing STF-FCI algorithm is to replace low pass filter (LPF) with a mean as it can generate a fast and accurate fundamental reference current to operate the SAPF in reducing the harmonics content of the power system and provide a fast response time in the dynamic-state conditions. This paper is presented under both steady-state which is capacitive (RC) load or inductive (RL) load as well as dynamic condition where capacitive load change to inductive load. The performance of steady-state condition will be evaluated in terms of THD values, ripple factor, power factor and phase difference. Under dynamic-state condition, the dynamic speed will be evaluated to capture the speed of the amplitude change in nonlinear load in a period of time. MATLAB-Simulink is used to design and evaluate the proposed STF-FCI algorithm with mean algorithm and LPF algorithm for comparison purpose. The simulation results had shown the major improvement when THD values, ripple factor, power factor and phase difference are reduced. The response time of the changing load is shorter by using mean algorithm compare to LPF algorithm. The simulation results obtained proved success when the proposed STF-FCI algorithm using mean algorithm are much better than LPF algorithm in steady-state and dynamic conditions under two voltage conditions i.e. ideal and distorted voltage.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1527
Author(s):  
R. Senthil Kumar ◽  
K. Mohana Sundaram ◽  
K. S. Tamilselvan

The extensive usage of power electronic components creates harmonics in the voltage and current, because of which, the quality of delivered power gets affected. Therefore, it is essential to improve the quality of power, as we reveal in this paper. The problems of load voltage, source current, and power factors are mitigated by utilizing the unified power flow controller (UPFC), in which a combination of series and shunt converters are combined through a DC-link capacitor. To retain the link voltage and to maximize the delivered power, a PV module is introduced with a high gain converter, named the switched clamped diode boost (SCDB) converter, in which the grey wolf optimization (GWO) algorithm is instigated for tracking the maximum power. To retain the link-voltage of the capacitor, the artificial neural network (ANN) is implemented. A proper control of UPFC is highly essential, which is achieved by the reference current generation with the aid of a hybrid algorithm. A genetic algorithm, hybridized with the radial basis function neural network (RBFNN), is utilized for the generation of a switching sequence, and the generated pulse has been given to both the series and shunt converters through the PWM generator. Thus, the source current and load voltage harmonics are mitigated with reactive power compensation, which results in attaining a unity power factor. The projected methodology is simulated by MATLAB and it is perceived that the total harmonic distortion (THD) of 0.84% is attained, with almost a unity power factor, and this is validated with FPGA Spartan 6E hardware.


Sign in / Sign up

Export Citation Format

Share Document