Co-located storage systems with renewable energy sources for voltage support in distribution networks

Author(s):  
Vito Calderaro ◽  
Vincenzo Galdi ◽  
Francesco Lamberti ◽  
Antonio Piccolo
2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 3026 ◽  
Author(s):  
Watcharakorn Pinthurat ◽  
Branislav Hredzak

The penetration and integration of renewable energy sources into modern power systems has been increasing over recent years. This can lead to frequency excursion and low inertia due to renewable energy sources’ intermittency and absence of rotational synchronous machines. Battery energy storage systems can play a crucial role in providing the frequency compensation because of their high ramp rate and fast response. In this paper, a decentralized frequency control system composed of three parts is proposed. The first part provides adaptive frequency droop control with its droop coefficient a function of the real-time state of charge of battery. The second part provides a fully decentralized frequency restoration. In the third part, a virtual inertia emulation improves the microgrid resilience. The presented results demonstrate that the proposed control system improves the microgrid resilience and mitigates the frequency deviation when compared with conventional ω -P droop control and existing control systems. The proposed control system is verified on Real-Time Digital Simulator (RTDS), with accurate microgrid model, nonlinear battery models and detailed switching models of power electronic converters.


2018 ◽  
Vol 7 (3) ◽  
pp. 223-231
Author(s):  
Saad Muftah Saad ◽  
Naser El Naily ◽  
Faisal A. Mohamed

The environmental and economic features of renewable energy sources have made it possible to be integrated as Distributed Generation (DG) units in distribution networks and to be widely utilized in modern distribution systems. The intermittent nature of renewable energy sources, altering operational conditions, and the complex topology of active distribution networks makes the level of fault currents significantly variable. Thus, the use of distance protection scheme instead of conventional overcurrent schemes offers an appropriate alternative for protection of modern distribution networks. In this study, the effect of integrating multiple DG units on the effective cover of distance protection schemes and the coordination between various relays in the network was studied and investigated in radiology and meshed operational topologies. Also, in cases of islanded and grid-connected modes. An adaptive distance scheme has been proposed for adequate planning of protection schemes to protect complex networks with multiple distribution sources. The simplified simulated network implemented in NEPLAN represents a benchmark IEC microgrid. The comprehensive results show an effective protection measure for secured microgrid operation.Article History: Received October 18th 2017; Received in revised form May 17th 2018; Accepted July 8th 2018; Available onlineHow to Cite This Article: Saad, S.M., Naily, N.E. and Mohamed, F.A. (2018). Investigating the Effect of DG Infeed on the Effective Cover of Distance Protection Scheme in Mixed-MV Distribution Network. International Journal of Renewable Energy Development, 7(3), 223-231.https://doi.org/10.14710/ijred.7.3.223-231


Sign in / Sign up

Export Citation Format

Share Document