Voltage profile improvement by capacitor placement and control in unbalanced distribution systems using GA

Author(s):  
Kyu-Ho Kim ◽  
Seok-Ku You
2020 ◽  
Vol 01 (04) ◽  
pp. 150-169
Author(s):  
Sk. Md. Golam Mostafa ◽  
Jai Govind Shingh ◽  
H.M. Enamul Haque

The main goal of power utilities is to supply reliable and quality power to the end-users and fulfill their total demands at all possible locations. Most of the loads are connected in the distribution systems are inductive. The excessive reactive power demand over the distribution network causes tremendous reactive power losses and changes the voltage profile, hence the system's reliability. Shunt Capacitor Bank (SCB) is widely used in the distribution system for reactive power support, voltage profile, and system performance improvement. But there are some challenges to employ SCB in the distribution network; among them, ensuring the most optimum location and size is a big challenge to get the maximum benefits. Some existing techniques showed better loss reduction but needed either larger SCBs sizes or cause improper node voltage. In this research study, the first section provides an extensive literature review of optimal SCBs placement and sizing. Later on, a new technique called Combinatorial Method has been developed for sizing and sitting of optimal Shunt Capacitors to reduce the distribution loss significantly. The developed method was tested for different case studies using Indian practical 22-bus and IEEE-69-bus network. The results were compared with DSA, Fuzzy GA, and TLBO method and found better distribution feeder loss minimization and voltage profile improvement.


Author(s):  
Su Mon Myint ◽  
Soe Win Naing

Nowadays, the electricity demand is increasing day by day and hence it is very important not only to extract electrical energy from all possible new power resources but also to reduce power losses to an acceptable minimum level in the existing distribution networks where a large amount of power dissipation occurred. In Myanmar, a lot of power is remarkably dissipated in distribution system.  Among methods in reducing power losses, network reconfiguration method is employed for loss minimization and exhaustive technique is also applied to achieve the minimal loss switching scheme. Network reconfiguration in distribution systems is performed by opening sectionalizing switches and closing tie switches of the network for loss reduction and voltage profile improvement. The distribution network for existing and reconfiguration conditions are modelled and simulated by Electrical Transient Analyzer Program (ETAP) 7.5 version software. The inputs are given based on the real time data collected from 33/11kV substations under Yangon Electricity Supply Board (YESB). The proposed method is tested on 110-Bus, overhead AC radial distribution network of Dagon Seikkan Township since it is long-length, overloaded lines and high level of power dissipation is occurred in this system. According to simulation results of load flow analysis, voltage profile enhancement and power loss reduction for proposed system are revealed in this paper.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Tung Tran The ◽  
Dieu Vo Ngoc ◽  
Nguyen Tran Anh

This paper proposes a chaotic stochastic fractal search algorithm (CSFSA) method to solve the reconfiguration problem for minimizing the power loss and improving the voltage profile in distribution systems. The proposed method is a metaheuristic method developed for overcoming the weaknesses of the conventional SFSA with two processes of diffuse and update. In the first process, new points will be created from the initial points by the Gaussian walk. For the second one, SFSA will update better positions for the particles obtained in the diffusion process. In addition, this study has also integrated the chaos theory to improve the SFSA diffusion process as well as increase the rate of convergence and the ability to find the optimal solution. The effectiveness of the proposed CSFSA has been verified on the 33-bus, 84-bus, 119-bus, and 136-bus distribution systems. The obtained results from the test cases by CSFSA have been verified to those from other natural methods in the literature. The result comparison has indicated that the proposed method is more effective than many other methods for the test systems in terms of power loss reduction and voltage profile improvement. Therefore, the proposed CSFSA can be a very promising potential method for solving the reconfiguration problem in distribution systems.


Sign in / Sign up

Export Citation Format

Share Document