A Wiener Process Model With Kernel-based Time Transformation For Nonlinear Degradation Data

Author(s):  
Hanyu Wang ◽  
Zhen Chen ◽  
Tangbin Xia ◽  
Di Zhou ◽  
Ershun Pan
Author(s):  
Zhiao Zhao ◽  
Yong Zhang ◽  
Guanjun Liu ◽  
Jing Qiu

Sample allocation and selection technology is of great significance in the test plan design of prognostics validation. Considering the existing researches, the importance of prognostics samples of different moments is not considered in the degradation process of a single failure. Normally, prognostics samples are generated under the same time interval mechanism. However, a prognostics system may have low prognostics accuracy because of the small quantity of failure degradation and measurement randomness in the early stage of a failure degradation process. Historical degradation data onto equipment failure modes are collected, and the degradation process model based on the multi-stage Wiener process is established. Based on the multi-stage Wiener process model, we choose four parameters to describe different degradation stages in a degradation process. According to four parameters, the sample selection weight of each degradation stage is calculated and the weight of each degradation stage is used to select prognostics samples. Taking a bearing wear fault of a helicopter transmission device as an example, its degradation process is established and sample selection weights are calculated. According to the sample selection weight of each degradation process, we accomplish the prognostics sample selection of the bearing wear fault. The results show that the prognostics sample selection method proposed in this article has good applicability.


2021 ◽  
Vol 198 ◽  
pp. 109295
Author(s):  
Xi Liu ◽  
Rongqiao Wang ◽  
Dianyin Hu ◽  
Long Zhang ◽  
Gaoxiang Chen

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Hongmei Shi ◽  
Jinsong Yang ◽  
Jin Si

Many freight trains for special lines have in common the characteristics of a fixed group. Centralized Condition-Based Maintenance (CCBM) of key components, on the same freight train, can reduce maintenance costs and enhance transportation efficiency. To this end, an optimization algorithm based on the nonlinear Wiener process is proposed, for the prediction of the train wheels Remaining Useful Life (RUL) and the centralized maintenance timing. First, Hodrick–Prescott (HP) filtering algorithm is employed to process the raw monitoring data of wheel tread wear, extracting its trend components. Then, a nonlinear Wiener process model is constructed. Model parameters are calculated with a maximum likelihood estimation and the general deterioration parameters of wheel tread wear are obtained. Then, the updating algorithm for the drift coefficient is deduced using Bayesian formula. The online updating of the model is realized, based on individual wheel monitoring data, while a probability density function of individual wheel RUL is obtained. A prediction method of RUL for centralized maintenance is proposed, based on two set thresholds: “maintenance limit” and “the ratio of limit-arriving.” Meanwhile, a CCBM timing prediction algorithm is proposed, based on the expectation distribution of individual wheel RUL. Finally, the model is validated using a 500-day online monitoring data on a fixed group, consisting of 54 freight train cars. The validation result shows that the model can predict the wheels RUL of the train for CCBM. The proposed method can be used to predict the maintenance timing when there is a large number of components under the same working conditions and following the same path of degradation.


2018 ◽  
Vol 170 ◽  
pp. 244-256 ◽  
Author(s):  
Pingping Wang ◽  
Yincai Tang ◽  
Suk Joo Bae ◽  
Yong He

2017 ◽  
Vol 66 (4) ◽  
pp. 1345-1360 ◽  
Author(s):  
Dejing Kong ◽  
Narayanaswamy Balakrishnan ◽  
Lirong Cui

2016 ◽  
Vol 65 ◽  
pp. 8-15 ◽  
Author(s):  
Junxing Li ◽  
Zhihua Wang ◽  
Xia Liu ◽  
Yongbo Zhang ◽  
Huimin Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document