Mode Division Multiplexing over 2km of OM2 fibre using rotationally optimized mode excitation with fibre coupler demultiplexer

Author(s):  
Joel Carpenter ◽  
Timothy D. Wilkinson
1980 ◽  
Vol 22 (5) ◽  
pp. 2392-2395 ◽  
Author(s):  
Jhy-Jiun Chang ◽  
J. T. Chen

2014 ◽  
Vol 105 (16) ◽  
pp. 162910 ◽  
Author(s):  
Andrey Kozyrev ◽  
Anatoly Mikhailov ◽  
Sergey Ptashnik ◽  
Peter K. Petrov ◽  
Neil Alford

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Vel Murugan Gomathy ◽  
T. V. Paramasivam Sundararajan ◽  
C. Sengodan Boopathi ◽  
Pandiyan Venkatesh Kumar ◽  
Krishnamoorthy Vinoth Kumar ◽  
...  

AbstractIn the present study, the application of free space optics (FSO) transmission system to realize a long-reach high-altitude platform (HAP)-to-satellite communication link has been exploited. High-speed information transmission without interference is accomplished using orthogonal frequency division multiplexing (OFDM). Further, the information capacity of the proposed system is increased by employing mode division multiplexing (MDM). We have investigated the proposed MDM-OFDM-HAP-to-satellite FSO transmission system performance over varying FSO range, diameter of the receiver, pointing errors, and input power. Also, an improved transmission performance of the proposed system using a square root module is reported.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Rabiu Imam Sabitu ◽  
Nafizah Goriman Khan ◽  
Amin Malekmohammadi

AbstractThis report examines the performance of a high-speed MDM transmission system supporting four nondegenerate spatial modes at 10 Gb/s. The analysis adopts the NRZ modulation format to evaluate the system performance in terms of a minimum power required (PN) and the nonlinear threshold power (PTH) at a BER of 10−9. The receiver sensitivity, optical signal-to-noise ratio, and the maximum transmission distance were investigated using the direct detection by employing a multimode erbium-doped amplifier (MM-EDFA). It was found that by properly optimizing the MM-EDFA, the system performance can significantly be improved.


2020 ◽  
Author(s):  
V. S. Pavelyev ◽  
K. N. Tukmakov ◽  
Yu. Yu. Choporova ◽  
N. D. Osintseva ◽  
B. A. Knyazev

Sign in / Sign up

Export Citation Format

Share Document