Hard x-ray spectral energy distributions from pulsed power generators measured by transmission crystal spectrometers

Author(s):  
John Seely ◽  
Uri Feldman ◽  
Bruce Weber ◽  
Joseph Schumer
2003 ◽  
Vol 590 (1) ◽  
pp. 128-148 ◽  
Author(s):  
Joanna K. Kuraszkiewicz ◽  
Belinda J. Wilkes ◽  
Eric ◽  
J. Hooper ◽  
Kim K. McLeod ◽  
...  

2019 ◽  
Vol 15 (S341) ◽  
pp. 21-25
Author(s):  
M. J. I. Brown ◽  
K. J. Duncan ◽  
H. Landt ◽  
M. Kirk ◽  
C. Ricci ◽  
...  

AbstarctWe present ongoing work on the spectral energy distributions (SEDs) of active galactic nuclei (AGNs), derived from X-ray, ultraviolet, optical, infrared and radio photometry and spectroscopy. Our work is motivated by new wide-field imaging surveys that will identify vast numbers of AGNs, and by the need to benchmark AGN SED fitting codes. We have constructed 41 SEDs of individual AGNs and 80 additional SEDs that mimic Seyfert spectra. All of our SEDs span 0.09 to 30μm, while some extend into the X-ray and/or radio. We have tested the utility of the SEDs by using them to generate AGN photometric redshifts, and they outperform SEDs from the prior literature, including reduced redshift errors and flux density residuals.


Author(s):  
Yurika Yamada ◽  
Makoto Uemura ◽  
Ryosuke Itoh ◽  
Yasushi Fukazawa ◽  
Masanori Ohno ◽  
...  

Abstract We report on the variations of the physical parameters of the jet observed in the blazar Mrk 421, and discuss the origin of X-ray flares in the jet, based on analysis of several spectral energy distributions (SEDs). The SEDs are modeled using the one-zone synchrotron self-Compton model, its parameters determined using a Markov chain Monte Carlo method. The lack of data at TeV energies means many of the parameters cannot be uniquely determined and are correlated. These are studied in detail. We find that the optimal solution can be uniquely determined only when we apply a constraint to one of four parameters: the magnetic field (B), the Doppler factor, the size of the emitting region, and the normalization factor of the electron energy distribution. We used 31 sets of SEDs from 2009 to 2014 with optical–UV data observed with UVOT/Swift and the Kanata telescope, X-ray data with XRT/Swift, and γ-ray data with the Fermi Large Area Telescope. The result of our SED analysis suggests that, in the X-ray faint state, the emission occurs in a relatively small area (∼1016 cm) with a relatively strong magnetic field (B ∼ 10−1 G). The X-ray bright state shows a tendency opposite to that of the faint state, that is, a large emitting area (∼1018 cm), probably downstream of the jet, and a weak magnetic field (B ∼ 10−3 G). The high X-ray flux was due to an increase in the maximum energy of electrons. On the other hand, the presence of two kinds of emitting areas implies that the one-zone model is unsuitable for reproducing at least part of the observed SEDs.


1994 ◽  
Vol 108 ◽  
pp. 374 ◽  
Author(s):  
Jill Bechtold ◽  
Martin Elvis ◽  
Fabrizio Fiore ◽  
Olga Kuhn ◽  
Roc M. Cutri ◽  
...  

1994 ◽  
Vol 159 ◽  
pp. 332-332
Author(s):  
D. Rigopoulou ◽  
A. Lawrence

Ultraluminous IRAS Galaxies (ULG's) have luminosities comparable to quasars while their space density is much higher than that of active galaxies. Much debate has centered around the origin of the energy source for these objects, whether this is a burst of star formation or a hidden quasar. The sample studied here is the Sanders et al. (1988) sample, 10 objects with LFIR ≥ 1012L⊙. We discuss our new observations at X-ray and submm wavelengths together with other published data for some of the objects. Some useful ideas can be gained from comparisons of the shape of the spectral energy distributions (SED's) of the ultraluminous objects with other “archetype” objects such as typical starbursts i.e. M82 or type 2 AGN i.e. NGC1068.


2019 ◽  
Vol 489 (3) ◽  
pp. 3351-3367 ◽  
Author(s):  
M J I Brown ◽  
K J Duncan ◽  
H Landt ◽  
M Kirk ◽  
C Ricci ◽  
...  

ABSTRACT We present spectral energy distributions (SEDs) of 41 active galactic nuclei, derived from multiwavelength photometry and archival spectroscopy. All of the SEDs span at least 0.09 to 30 $\mu$m, but in some instances wavelength coverage extends into the X-ray, far-infrared, and radio. For some active galactic nuclei (AGNs) we have fitted the measured far-infrared photometry with greybody models, while radio flux density measurements have been approximated by power laws or polynomials. We have been able to fill some of the gaps in the spectral coverage using interpolation or extrapolation of simple models. In addition to the 41 individual AGN SEDs, we have produced 72 Seyfert SEDs by mixing SEDs of the central regions of Seyferts with galaxy SEDs. Relative to the literature, our templates have broader wavelength coverage and/or higher spectral resolution. We have tested the utility of our SEDs by using them to generate photometric redshifts for 0 < z ≤ 6.12 AGNs in the Boötes field (selected with X-ray, IR, and optical criteria) and, relative to SEDs from the literature, they produce comparable or better photometric redshifts with reduced flux density residuals.


2012 ◽  
Vol 200 (2) ◽  
pp. 17 ◽  
Author(s):  
Markos Trichas ◽  
Paul J. Green ◽  
John D. Silverman ◽  
Tom Aldcroft ◽  
Wayne Barkhouse ◽  
...  

2007 ◽  
Vol 663 (1) ◽  
pp. 81-102 ◽  
Author(s):  
M. Polletta ◽  
M. Tajer ◽  
L. Maraschi ◽  
G. Trinchieri ◽  
C. J. Lonsdale ◽  
...  

2019 ◽  
Vol 492 (2) ◽  
pp. 1887-1901 ◽  
Author(s):  
Xiaotong Guo ◽  
Qiusheng Gu ◽  
Nan Ding ◽  
E Contini ◽  
Yongyun Chen

ABSTRACT The physical parameters of galaxies and/or active galactic nucleus (AGNs) can be derived by fitting their multiband spectral energy distributions (SEDs). By using cigale code, we perform multiband SED fitting (from ultraviolet to infrared) for 791 X-ray sources (518 AGNs and 273 normal galaxies) in the 7 Ms Chandra Deep Field-south survey (CDFS). We consider the contributions from AGNs and adopt more accurate redshifts than published before. Therefore, more accurate star formation rates (SFRs) and stellar masses (M*) are derived. We classify the 518 AGNs into type-I and type-II based on their optical spectra and their SEDs. Moreover, six AGN candidates are selected from the 273 normal galaxies based on their SEDs. Our main results are as follows: (1) the host galaxies of AGNs have larger M* than normal galaxies, implying that AGNs prefer to host in massive galaxies; (2) the specific star formation rates (sSFRs) of AGN host galaxies are different from those of normal galaxies, suggesting that AGN feedback may play an important role in the star formation activity; (3) we find that the fraction of optically obscured AGNs in CDFS decreases with the increase of intrinsic X-ray luminosity, which is consistent with previous studies; and (4) the host galaxies of type-I AGNs tend to have lower M* than type-II AGNs, which may suggest that dust in the host galaxy may also contribute to the optical obscuration of AGNs.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 253-254
Author(s):  
Andreja Gomboc ◽  
Jure Japelj ◽  
Stefano Covino

AbstractGamma Ray Bursts (GRBs) can be used as a powerful tool to study galactic environments at different epochs of the Universe's evolution, thanks to their bright afterglow emission ranging from X-rays to optical and radio wavebands. Important aspect of the environment is dust, which plays a central role in the astrophysical processes of interstellar medium and in the formation of stars. GRBs can be a unique probe of dust at cosmological distances, where its origin and properties are still poorly known. By using a sample of GRB afterglow spectra observed with the VLT/X-shooter spectrograph we studied the rest-frame extinction in GRB lines-of-sight by modelling the broadband near-infrared to X-ray afterglow spectral energy distributions. We present our results on the rest-frame extinction of our sample, and illustrate that the spectroscopic data, thanks to a combination of excellent resolution and coverage of the blue part of the spectral energy distributions, are more successful than photometric measurements in constraining the extinction curves and therefore the dust properties in GRB hosts.


Sign in / Sign up

Export Citation Format

Share Document