An adaptive control of voltage source converter based scheme for grid connected solar PV - battery system

Author(s):  
Ujjwal Kumar Kalla ◽  
Madhuri Mantri
2021 ◽  
Vol 23 (07) ◽  
pp. 678-689
Author(s):  
Bilal Ahmad Ganie ◽  
◽  
Dr. (Mrs.) Lini Mathew ◽  

This study provides an adaptive control approach of VSC (voltage source converter) coupled with SPV (solar photovoltaic array), in a 3P3W (three-phase three-wire) system with three single-phase non-linear loads having Distributed Static Compensator (DSTATCOM) abilities using P and O (perturb & observe) methodology. The adaptive control technique converges quickly and has a low mean square error. For the correction of power factor and zero voltage regulation modes, the system is studied and simulated. The system’s great efficacy at high voltages is due to its one-stage structure. Grid current harmonics are significantly below the IEEE-519 norm. The suggested system is modeled and simulated with the available sim power system toolbox in MATLAB/Simulink, and the system’s behavior under different loads and environmental circumstances is confirmed.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 490 ◽  
Author(s):  
Yueping Jiang ◽  
Xue Jin ◽  
Hui Wang ◽  
Yihao Fu ◽  
Weiliang Ge ◽  
...  

Voltage source converter (VSC) has been extensively applied in renewable energy systems which can rapidly regulate the active and reactive power. This paper aims at developing a novel optimal nonlinear adaptive control (ONAC) scheme to control VSC in both rectifier mode and inverter mode. Firstly, the nonlinearities, parameter uncertainties, time-varying external disturbances, and unmodelled dynamics can be aggregated into a perturbation, which is then estimated by an extended state observer (ESO) called high-gain perturbation observer (HGPO) online. Moreover, the estimated perturbation will be fully compensated through state feedback. Besides, the observer gains and controller gains are optimally tuned by a recent emerging biology-based memetic salp swarm algorithm (MSSA), the utilization of such method can ensure a desirably satisfactory control performance. The advantage of ONAC is that even though the operation conditions are constantly changing, the control performance can still be maintained to be globally consistent. In addition, it is noteworthy that in rectifier mode only the reactive power and DC voltage are required to be measured, while in inverter mode merely the reactive power and active power have to be measured. At last, in order to verify the feasibility of ONAC in practical application, a hardware experiment is implemented.


2017 ◽  
Vol 26 (09) ◽  
pp. 1750133 ◽  
Author(s):  
R. Balamurugan ◽  
R. Nithya

In this paper, fuzzy logic controller (FLC)-based three-phase shunt active power filter with photovoltaic (PV) system is proposed. This filter comprises voltage source converter (VSC) with DC link capacitor at the input side and is supplied by PV system. The salient feature of the filter is that it provides reactive power compensation with line current harmonic reduction and also neutral compensation at point of common coupling (PCC). The PV system and a battery are connected with VSC through DC–DC converter. This paper also proposes a control algorithm using instantaneous [Formula: see text]-[Formula: see text] theory that generates a reference current to counteract the harmonics. The FLC controls the DC link voltage in reference to the above reference current. The performance of the proposed filter for compensation is confirmed by using the MATLAB/Simulink environment and results are validated.


2008 ◽  
Vol 32 (2) ◽  
pp. 179-195 ◽  
Author(s):  
Shameem Ahmad Lone ◽  
Mairajud-Din Mufti ◽  
Shiekh Javed Iqbal

Energy storage devices are required for power quality maintenance in stand alone power systems like wind-diesel ones. A redox flow battery system has many virtues which make its integration with a wind-diesel power system attractive. This paper proposes the integration of a redox flow battery system with a typical multi-machine wind-diesel power system for simultaneous voltage and frequency regulation. The redox flow battery is connected to wind park bus through a current controlled voltage source converter based on hysterisis current control. Keeping in view the non-linear and time varying nature of the hybrid wind-diesel-redox flow battery system, neuro-adaptive control is proposed for active/reactive power modulation of the redox flow battery.


2016 ◽  
Vol 17 (4) ◽  
pp. 425-434 ◽  
Author(s):  
Ikhlaq Hussain ◽  
Maulik Kandpal ◽  
Bhim Singh

Abstract This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.


Sign in / Sign up

Export Citation Format

Share Document