Performance comparison of reference current extraction techniques for indirect current control based shunt active filter

Author(s):  
Niharika Gotherwal ◽  
Jitendra Kumar Nama ◽  
Soumyadeep Ray ◽  
Nitin Gupta
Author(s):  
Adel Elgammal ◽  
Curtis Boodoo

This article offers a clear and realistic design for an active power filter to increase reliability and power quality of the photovoltaic charging system and a high-penetration electric vehicle distribution system. The MOPSO algorithm is used as the basis for problems with optimization and filter tuning. A typical regular load curve is used to model the warped power grid over a 24-hour cycle to estimate the total harmonic distortion (THD). For structures with high penetration of electric cars, the probability of minimizing THD (for example to five percent) is explored via optimum capacity active shunt filters and shunt capacitors. To maximize general performance of the charging system, the switching systems are re-scheduled. Moreover, to increase the current control accuracy of shunt active filter, the fuzzy logic controller is utilized. The major drawback to new system is that it would have unrestricted billing for entire day to cope with voltage interruption. In MATLAB / SIMULINK, detailed machine setup and control algorithm experiments are simulated. The simulation findings confirm the efficiency and viability of projected shunt active filter to enhance voltage profile and track power performance of photovoltaic charging system.


2020 ◽  
Vol 184 ◽  
pp. 01041
Author(s):  
Krishna S. Patel ◽  
Vijay H. Makwana

This paper presents the modified grid side converter control (GSC) technique which enable the GSC to work as a shunt active filter to mitigate the grid current harmonics produced by the nonlinear load, as well as to transfer power from the grid to the rotor of doubly fed induction generator (DFIG) or vice versa. The main contribution of this proposed technique is an addition of a shunt active filter with space vector pulse width modulation (SVPWM) controller in GSC control itself in order to achieve a better grid current %THD profile, and simultaneously to control active power for variable wind speed. The reactive power supply to the DFIG and extraction of maximum power is achieved using RSC. The comparison of the modified GSC control technique using hysteresis current control (HCC), and SVPWM controller used to mitigate the harmonics is presented with different wind speeds. The proposed modified GSC control technique is simulated for grid-connected 2.6 MW DFIG based wind energy conversion system (WECS) in MATLAB Simulink environment.


Sign in / Sign up

Export Citation Format

Share Document