scholarly journals Improving Power Quality and Mitigation of Harmonic Distortion Impact at Photovoltaic Electric Vehicle Charging System

Author(s):  
Adel Elgammal ◽  
Curtis Boodoo

This article offers a clear and realistic design for an active power filter to increase reliability and power quality of the photovoltaic charging system and a high-penetration electric vehicle distribution system. The MOPSO algorithm is used as the basis for problems with optimization and filter tuning. A typical regular load curve is used to model the warped power grid over a 24-hour cycle to estimate the total harmonic distortion (THD). For structures with high penetration of electric cars, the probability of minimizing THD (for example to five percent) is explored via optimum capacity active shunt filters and shunt capacitors. To maximize general performance of the charging system, the switching systems are re-scheduled. Moreover, to increase the current control accuracy of shunt active filter, the fuzzy logic controller is utilized. The major drawback to new system is that it would have unrestricted billing for entire day to cope with voltage interruption. In MATLAB / SIMULINK, detailed machine setup and control algorithm experiments are simulated. The simulation findings confirm the efficiency and viability of projected shunt active filter to enhance voltage profile and track power performance of photovoltaic charging system.

Author(s):  
Mahmoud Mostefa Tounsi ◽  
Ahmed Allali ◽  
Houari Merabet Boulouiha ◽  
Mouloud Denaï

This paper addresses the problem of power quality, and the degradation of the current waveform in the distribution network which results directly from the proliferation of the nonlinear loads. We propose to use a five-level neutral point clamped (NPC) inverter topology for the implementation of the shunt active filter (SAPF). The aim of the SAPF is to inject harmonic currents in phase opposition at the connection point. The identification of harmonics is based on the pq method. A neuro-fuzzy controller based on ANFIS (adaptive neuro fuzzy inference system) is designed for the SAPF. The simulation study is carried out using MATLAB/Simulink and the results show a significant improvement in the quality of energy and a reduction in total harmonic distortion (THD) in accordance with IEC standard, IEEE-519, IEC 61000, EN 50160.


2014 ◽  
Vol 622 ◽  
pp. 121-126
Author(s):  
Rahiman Zahira ◽  
A. Peer Fathima ◽  
Ranganath Muthu

This paper presents the fuzzy logic controller for shunt active power filter used to compensate harmonic distortion in a three-phase system. The shunt active filter employs a simple method for estimating the reference compensation current. A fuzzy logic based current control strategy is used to regulate the filter current and hence ensure harmonic free supply current. Classic filters may not have satisfactory performance in fast varying conditions. However, an auto-tuned active power filter gives better results for harmonic minimization and power factor improvement. The proposed fuzzy based shunt active filter maintains the THD well within IEEE-519 standards. The validity of the presented approach in harmonic mitigation is verified by simulation results in MATLAB/ Simulink and hardware prototype.


Author(s):  
Dasari Vinay

In this paper we are going to see how the DSM PI controller is used to reduce the harmonics in faster. DSM PI controller steps up the voltage to required level. The main aim is to improve the total harmonic distortion. Keywords: Shunt active filter, hybrid active filters, DSM PI controller


2020 ◽  
Vol 8 (6) ◽  
pp. 1004-1012

The power quality problem in the power system is increased with the use of non-linear devices. Due to the use of non-linear devices like power electronic converters, there is an increase in harmonic content in the source current. Due to this there is an increase in the losses, instability and poor voltage waveform. To mitigate the harmonics and provide the reactive power compensation, we use filters. There are different filters used in the power system. Passive filters provide limited compensation, so active filters can be used for variable compensation. In this paper, a shunt active filter has been made adaptive using a Variable Leaky Least Mean Square (VLLMS) based controller. Proposed adaptive controller can be able to compensate for harmonic currents, power factor and nonlinear load unbalance. DC capacitor voltage has been regulated at a desired level using a PI controller and a self-charging circuit technique. But, this scheme has two disadvantages such as, tuning issues of current controller pre-requisites the traditional PI controller, which is controlled by intelligent based Fuzzy-Logic controller for achieving good performance features. The design concept of proposed intelligent Fuzzy controller for shunt active filter has been verified through simulation analysis and results are presented with proper comparisons.


2019 ◽  
Vol 1 (3) ◽  
pp. 40-47
Author(s):  
Mohamed jaidu Mansoor ◽  
Ranjith Kumar

Elevation of power electronics technology, converter are the main causes for power quality issues, because of their high switching characteristics.so to reduce the harmonics injected by the nonlinear load, the filters are play a major role to improve a power quality improvement, particularly shunt active filter is more reliable for reduce a harmonic in power system network. This novel technique proposed for design a shunt active filter with solar photovoltaic array integrated into nonlinear load using a Point of Common Coupling (PCC) technique. Zero crossing detection technique are used to extract the magnitude of a fundamental active components of distorted load currents. The estimation of harmonic isolator and current compensation are controlled by Field Programmable Gate Array (FPGA) controller, different types of compensation techniques are used in this work Synchronous reference frame theory, instantaneous reactive power theory (PQ) and hysteresis current control technique. These techniques enable extraction of active power, regulates a load voltage and maintain a phasor sequence at PCC under the voltage sag and swell. Simulation is carried out by MATLAB/SIMULINK for different compensations techniques and Total Harmonics Distortion (THD) values are tabulated.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 892
Author(s):  
Poornima Udaychandra Panati ◽  
Sridhar Ramasamy ◽  
Mominul Ahsan ◽  
Julfikar Haider ◽  
Eduardo M.G. Rodrigues

The existing solutions for reducing total harmonic distortion (THD) using different control algorithms in shunt active power filters (SAPFs) are complex. This work proposes a split source inverter (SSI)-based SAPF for improving the power quality in a nonlinear load system. The advantage of the SSI topology is that it is of a single stage boost inverter with an inductor and capacitor where the conventional two stages with an intermediate DC-DC conversion stage is discarded. This research proposes inventive control schemes for SAPF having two control loops; the outer control loop regulates the DC link voltage whereas the inner current loop shapes the source current profile. The control mechanism implemented here is an effective, less complex, indirect scheme compared to the existing time domain control algorithms. Here, an intelligent fuzzy logic control regulates the DC link voltage which facilitates reference current generation for the current control scheme. The simulation of the said system was carried out in a MATLAB/Simulink environment. The simulations were carried out for different load conditions (RL and RC) using a fuzzy logic controller (FLC) and PI controllers in the outer loop (voltage control) and hysteresis current controller (HCC) and sinusoidal pulse width modulation (SPWM) in the inner loop (current control). The simulation results were extracted for dynamic load conditions and the results demonstrated that the THD can be reduced to 0.76% using a combination of SPWM and FLC. Therefore, the proposed system proved to be effective and viable for reducing THD. This system would be highly applicable for renewable energy power generation such as Photovoltaic (PV) and Fuel cell (FC).


Sign in / Sign up

Export Citation Format

Share Document