System Frequency Control by LFC signal equipartition method based on slow smart charging of Electric Vehicle

Author(s):  
Tomohiro Adachi ◽  
Akihiko Yokoyama
2020 ◽  
Author(s):  
Akshada Jadhav ◽  
Ganesh Ghorpade ◽  
Nayan Kanthikar ◽  
Nitesh Anwat

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2418
Author(s):  
Abdul Latif ◽  
S. M. Suhail Hussain ◽  
Dulal Chandra Das ◽  
Taha Selim Ustun

It is known that keeping the power balance between generation and demand is crucial in containing the system frequency within acceptable limits. This is especially important for renewable based distributed hybrid microgrid (DHμG) systems where deviations are more likely to occur. In order to address these issues, this article develops a prominent dual-level “proportional-integral-one plus double derivative {PI−(1 + DD)} controller” as a new controller for frequency control (FC) of DHμG system. The proposed control approach has been tested in DHμG system that consists of wind, tide and biodiesel generators as well as hybrid plug-in electric vehicle and an electric heater. The performance of the modified controller is tested by comparing it with standard proportional-integral (PI) and classical PID (CPID) controllers considering two test scenarios. Further, a recently developed mine blast technique (MBA) is utilized to optimize the parameters of the newly designed {PI − (1 + DD)} controller. The controller’s performance results are compared with cases where particle swarm optimization (PSO) and firefly (FF) techniques are used as benchmarks. The superiority of the MBA-{PI − (1 + DD)} controller in comparison to other two strategies is illustrated by comparing performance parameters such as maximum frequency overshoot, maximum frequency undershoot and stabilization time. The displayed comparative objective function (J) and JFOD index also shows the supremacy of the proposed controller. With this MBA optimized {PI − (1 + DD)} controller, frequency deviations can be kept within acceptable limits even with high renewable energy penetration.


Author(s):  
Yue Wang ◽  
David Infield ◽  
Simon Gill

This paper assumes a smart grid framework where the driving patterns for electric vehicles are known, time variations in electricity prices are communicated to householders, and data on voltage variation throughout the distribution system are available. Based on this information, an aggregator with access to this data can be employed to minimise electric vehicles charging costs to the owner whilst maintaining acceptable distribution system voltages. In this study, electric vehicle charging is assumed to take place only in the home. A single-phase Low Voltage (LV) distribution network is investigated where the local electric vehicles penetration level is assumed to be 100%. Electric vehicle use patterns have been extracted from the UK Time of Use Survey data with a 10-min resolution and the domestic base load is generated from an existing public domain model. Apart from the so-called real time price signal, which is derived from the electricity system wholesale price, the cost of battery degradation is also considered in the optimal scheduling of electric vehicles charging. A simple and effective heuristic method is proposed to minimise the electric vehicles’ charging cost whilst satisfying the requirement of state of charge for the electric vehicles’ battery. A simulation in OpenDSS over a period of 24 h has been implemented, taking care of the network constraints for voltage level at the customer connection points. The optimisation results are compared with those obtained using dynamic optimal power flow.


2012 ◽  
Vol 512-515 ◽  
pp. 788-793
Author(s):  
Xiao Hua Zhou ◽  
Ming Qiang Wang ◽  
Wei Wei Zou

Traditional decoupling control strategy of doubly-fed induction generator (DFIG) wind turbine makes little contribution to system inertia and do not participate in the system frequency control, the synchronization of large-scale wind power requires wind turbine have the ability to participate in the regulation of power system frequency. This paper adds a frequency control segment to traditional DFIG wind turbine and considers the doubly-fed wind turbine operating on the state of the super-synchronous speed, by analysis the effect of inertia and proportional control strategies, a fuzzy control strategy which combines the advantages of the former two control strategies is proposed, simulation results show that this control strategy can more effectively improve the system frequency response.


2021 ◽  
Vol 675 (1) ◽  
pp. 012163
Author(s):  
Xuliang Zhao ◽  
Jiguang Xue ◽  
Tong Wu ◽  
Hong Xue ◽  
Sitong Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document