System frequency control using multi-step smart charging of electric vehicles

Author(s):  
Phichian Chatupromwong ◽  
Akihiko Yokoyama
Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1623
Author(s):  
Bor-Ren Lin

In order to realize emission-free solutions and clean transportation alternatives, this paper presents a new DC converter with pulse frequency control for a battery charger in electric vehicles (EVs) or light electric vehicles (LEVs). The circuit configuration includes a resonant tank on the high-voltage side and two variable winding sets on the output side to achieve wide output voltage operation for a universal LEV battery charger. The input terminal of the presented converter is a from DC microgrid with voltage levels of 380, 760, or 1500 V for house, industry plant, or DC transportation vehicle demands, respectively. To reduce voltage stresses on active devices, a cascade circuit structure with less voltage rating on power semiconductors is used on the primary side. Two resonant capacitors were selected on the resonant tank, not only to achieve the two input voltage balance problem but also to realize the resonant operation to control load voltage. By using the variable switching frequency approach to regulate load voltage, active switches are turned on with soft switching operation to improve converter efficiency. In order to achieve wide output voltage capability for universal battery charger demands such as scooters, electric motorbikes, Li-ion e-trikes, golf carts, luxury golf cars, and quad applications, two variable winding sets were selected to have a wide voltage output (50~160 V). Finally, experiments with a 1 kW rated prototype were demonstrated to validate the performance and benefits of presented converter.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2418
Author(s):  
Abdul Latif ◽  
S. M. Suhail Hussain ◽  
Dulal Chandra Das ◽  
Taha Selim Ustun

It is known that keeping the power balance between generation and demand is crucial in containing the system frequency within acceptable limits. This is especially important for renewable based distributed hybrid microgrid (DHμG) systems where deviations are more likely to occur. In order to address these issues, this article develops a prominent dual-level “proportional-integral-one plus double derivative {PI−(1 + DD)} controller” as a new controller for frequency control (FC) of DHμG system. The proposed control approach has been tested in DHμG system that consists of wind, tide and biodiesel generators as well as hybrid plug-in electric vehicle and an electric heater. The performance of the modified controller is tested by comparing it with standard proportional-integral (PI) and classical PID (CPID) controllers considering two test scenarios. Further, a recently developed mine blast technique (MBA) is utilized to optimize the parameters of the newly designed {PI − (1 + DD)} controller. The controller’s performance results are compared with cases where particle swarm optimization (PSO) and firefly (FF) techniques are used as benchmarks. The superiority of the MBA-{PI − (1 + DD)} controller in comparison to other two strategies is illustrated by comparing performance parameters such as maximum frequency overshoot, maximum frequency undershoot and stabilization time. The displayed comparative objective function (J) and JFOD index also shows the supremacy of the proposed controller. With this MBA optimized {PI − (1 + DD)} controller, frequency deviations can be kept within acceptable limits even with high renewable energy penetration.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4717 ◽  
Author(s):  
Sylvester Johansson ◽  
Jonas Persson ◽  
Stavros Lazarou ◽  
Andreas Theocharis

Social considerations for a sustainable future lead to market demands for electromobility. Hence, electrical power distribution operators are concerned about the real ongoing problem of the electrification of the transport sector. In this regard, the paper aims to investigate the large-scale integration of electric vehicles in a Swedish distribution network. To this end, the integration pattern is taken into consideration as appears in the literature for other countries and applies to the Swedish culture. Moreover, different charging power levels including smart charging techniques are examined for several percentages of electric vehicles penetration. Industrial simulation tools proven for their accuracy are used for the study. The results indicate that the grid can manage about 50% electric vehicles penetration at its current capacity. This percentage decreases when higher charging power levels apply, while the transformers appear overloaded in many cases. The investigation of alternatives to increase the grid’s capabilities reveal that smart techniques are comparable to the conventional re-dimension of the grid. At present, the increased integration of electric vehicles is manageable by implementing a combination of smart gird and upgrade investments in comparison to technically expensive alternatives based on grid digitalization and algorithms that need to be further confirmed for their reliability for power sharing and energy management.


2016 ◽  
Vol 88 ◽  
pp. 985-990 ◽  
Author(s):  
Fei Teng ◽  
Yunfei Mu ◽  
Hongjie Jia ◽  
Jianzhong Wu ◽  
Pingliang Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document