Direct, TCO-, and Monolayer-Mediated Semiconductor Wafer Bonding in Non-Cleanroom Environment for Photovoltaic Applications

Author(s):  
Ryoichi Inoue ◽  
Takenori Naito ◽  
Soichiro Hirata ◽  
Nagito Takehara ◽  
Katsuaki Tanabe
Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1742 ◽  
Author(s):  
Kodai Kishibe ◽  
Soichiro Hirata ◽  
Ryoichi Inoue ◽  
Tatsushi Yamashita ◽  
Katsuaki Tanabe

A new concept of semiconductor wafer bonding, mediated by optical wavelength conversion materials, is proposed and demonstrated. The fabrication scheme provides simultaneous bond formation and interfacial function generation, leading to efficient device production. Wavelength-converting functionalized semiconductor interfacial engineering is realized by utilizing an adhesive viscous organic matrix with embedded fluorescent particles. The bonding is carried out in ambient air at room temperature and therefore provides a cost advantage with regard to device manufacturing. Distinct wavelength conversion, from ultraviolet into visible, and high mechanical stabilities and electrical conductivities in the bonded interfaces are verified, demonstrating their versatility for practical applications. This bonding and interfacial scheme can improve the performance and structural flexibility of optoelectronic devices, such as solar cells, by allowing the spectral light incidence suitable for each photovoltaic material, and photonic integrated circuits, by delivering the respective preferred frequencies to the optical amplifier, modulator, waveguide, and detector materials.


2008 ◽  
Vol 1068 ◽  
Author(s):  
Fabrice Jerome Letertre

ABSTRACTEngineered substrates are expected to play a dominant role in the field of modern nano-electronic and optoelectronic technologies. For example, engineered substrates like SOI (Silicon On Insulator) make possible efficient optimization of transistors' current drive while minimizing the leakage and reducing parasitic elements, thus enhancing the overall IC performance in terms of speed or power consumption. Other generations of engineered substrates like strained SOI (sSOI) provide solutions to traditional scaling for 32 nm node and beyond [1] technologies.The Smart Cutä technology, introduced in the mid 1990's by M. Bruel [2] is a revolutionnary and powerful thin film technology for bringing to industrial maturity engineered substrate solutions. It is a combination of wafer bonding and layer transfer via the use of ion implantation. It allows multiple high quality transfers of thin layers, from a single crystal donor wafer onto another substrate of a different nature, allowing the integration of dissimilar materials. As a consequence, it opens the path to the formation of III-V based engineered substrates by integrating, for example, materials like GaAs [3], InP [4], SiC [5], GaN [6], Germanium [7] ,and Si [8 ]on a silicon, poly SiC, sapphire, ceramic, or metal substrates?In this paper, we will review the current wafer bonding and layer transfer technologies with a special emphasis on the Smart Cut technology applied to compound semiconductors. Beyond SOI, the innovation provided by substrate engineering will be illustrated by the case of Silicon and SiC engineered substrate serving as a platform for GaN and related alloys processing [9,10,11,12] as well as the case of Germanium/Si platform for the growth of GaAs/InP materials, opening the path to Si CMOS and III-V microelectronics/ optoelectronics functions hybrid integration [13, 14]. Recent results obtained in these two focused areas will be presented to emphasize the added functionalities offered by engineered substrates.[1] B. Ghyselen et al., ICSI3 proc., 173 5 (2003)[2] M. Bruel et al., Electron. Lett., vol 31, p. 1201 (1995)[3] E. Jalaguier et al., Electron. Lett., 34(4), 408 (1998)[4] E. Jalaguier et al. Proc. llth Intern. Conf. on InP and Related Materials, Davos, Switzerland, (1999)[5] L. Di Cioccio et al., Mat. Sci. and Eng. B Vol. 46, p. 349 (1997)[6] A. Tauzin and al., Semiconductor Wafer Bonding VIII, ECS Proc Vol. 2005-02, pp. 119-127[7] F. Letertre, et al. MRS Symp. Proc., 809, B4.4 (2004).[8] B. Faure et al., Semiconductor Wafer Bonding VIII, ECS Proc Vol. 2005-02, pp. 106-118[9] H. Larèche et al., Mat. Sci. For., Vols. 457–460 pp.. 1621 – 1624 (2004)[10] G. Meneghesso et al , IEDM 2007, to be published[11] Y. Dikme et al., Journal of Crystal Growth, v.272 (1-4), pp. 500-505 (2004)[12] J. Dorsaz and al., Proceedings, ICNS6 (2005)[13] S.G. Thomas et al., IEEE EDL Vol. 26, July 2005.[14] K. Chilukuri, Semi. Sci. Technol. 22 (2007) 29-34


Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1048 ◽  
Author(s):  
Takenori Naito ◽  
Katsuaki Tanabe

A Si/graphene/Si planar double heterostructure has been fabricated by means of semiconductor wafer bonding. The interfacial mechanical stability and interlayer electrical connection have been verified for the structure. To the best of our knowledge, this is the first realization of a monolayer-cored double heterostructure. In addition, a double heterostructure with bilayer graphene has been prepared for bandgap generation and tuning by application of a bias voltage. These structures move towards the realization of versatile graphene optoelectronics, such as an electrically pumped graphene laser. Our Si/graphene/Si double heterostructure is positioned to form a new basis for next-generation nanophotonic devices with high photon and carrier confinements, earth abundance (C, Si), environmental safety (C, Si), and excellent optical and electrical controllability by silicon clads.


2001 ◽  
Vol 78 (23) ◽  
pp. 3726-3728 ◽  
Author(s):  
Z. L. Liau ◽  
A. A. Liau

2001 ◽  
Vol 681 ◽  
Author(s):  
M. Reiche ◽  
M. Haueis ◽  
J. Dual ◽  
C. Cavalloni ◽  
R. Buser

ABSTRACTMost of the microelectromechanical systems (MEMS) require a 3-dimensional architecture which can efficiently be realized by multiple semiconductor wafer direct bonding. The present paper demonstrates the method on a force sensor for high resolution measurements of static loads. To minimize temperature stress an all-in silicon solution was developed in contrast to micromachined resonant force sensors published already in the literature.The presented force sensor integrates load coupling, the excitation and detection of the vibration of the microresonator in one and the same single crystal silicon package. First measurements proved a sensitivity of 26 Hz/N and a resolution better than 3 mN.


1995 ◽  
Vol 47-48 ◽  
pp. 33-44 ◽  
Author(s):  
U.M. Gösele ◽  
H. Stenzel ◽  
Manfred Reiche ◽  
T. Martini ◽  
H. Steinkirchner ◽  
...  

1998 ◽  
Vol 28 (1) ◽  
pp. 215-241 ◽  
Author(s):  
U. Gösele ◽  
Q.-Y. Tong

Sign in / Sign up

Export Citation Format

Share Document