scholarly journals Information Diversity in Coherent MIMO Radars

Author(s):  
Salvatore Maresca ◽  
Antonio Malacarne ◽  
Paolo Ghelfi ◽  
Antonella Bogoni
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jermyn Z. See ◽  
Natsumi Y. Homma ◽  
Craig A. Atencio ◽  
Vikaas S. Sohal ◽  
Christoph E. Schreiner

AbstractNeuronal activity in auditory cortex is often highly synchronous between neighboring neurons. Such coordinated activity is thought to be crucial for information processing. We determined the functional properties of coordinated neuronal ensembles (cNEs) within primary auditory cortical (AI) columns relative to the contributing neurons. Nearly half of AI cNEs showed robust spectro-temporal receptive fields whereas the remaining cNEs showed little or no acoustic feature selectivity. cNEs can therefore capture either specific, time-locked information of spectro-temporal stimulus features or reflect stimulus-unspecific, less-time specific processing aspects. By contrast, we show that individual neurons can represent both of those aspects through membership in multiple cNEs with either high or absent feature selectivity. These associations produce functionally heterogeneous spikes identifiable by instantaneous association with different cNEs. This demonstrates that single neuron spike trains can sequentially convey multiple aspects that contribute to cortical processing, including stimulus-specific and unspecific information.


2016 ◽  
Author(s):  
Jesse Conan Shore ◽  
Jiye Baek ◽  
Chrysanthos Dellarocas

Social media have great potential to support diverse information sharing, but there is widespread concern that platforms like Twitter do not result in communication between those who hold contradictory viewpoints. Because users can choose whom to follow, prior research suggests that social media users exist in "echo chambers" or become polarized. We seek evidence of this in a complete cross section of hyperlinks posted on Twitter, using previously validated measures of the political slant of news sources to study information diversity. Contrary to prediction, we find that the average account posts links to more politically moderate news sources than the ones they receive in their own feed. However, members of a tiny network core do exhibit cross-sectional evidence of polarization and are responsible for the majority of tweets received overall due to their popularity and activity, which could explain the widespread perception of polarization on social media.


2022 ◽  
Vol 70 ◽  
pp. 55-63
Author(s):  
Alexander V. Graham ◽  
John McLevey ◽  
Pierson Browne ◽  
Tyler Crick

2019 ◽  
Vol 37 (4) ◽  
pp. 1039-1060 ◽  
Author(s):  
Clyde Eiríkur Hull ◽  
Zhi Tang ◽  
Jintong Tang ◽  
Jun Yang

2009 ◽  
pp. 796-804
Author(s):  
Panjak Kamthan

Mobile applications today face the challenges of increasing information, diversity of users and user contexts, and ever-increasing variations in mobile computing platforms. They need to continue being a successful business model for service providers and useful to their user community in the light of these challenges. An appropriate representation of information is crucial for the agility, sustainability, and maintainability of the information architecture of mobile applications. This article discusses the potential of the Semantic Web (Hendler, Lassila, & Berners- Lee, 2001) framework to that regard. The organization of the article is as follows. We first outline the background necessary for the discussion that follows and state our position. This is followed by the introduction of a knowledge representation framework for integrating Semantic Web and mobile applications, and we deal with both social prospects and technical concerns. Next, challenges and directions for future research are outlined. Finally, concluding remarks are given.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 357
Author(s):  
Liang Gao ◽  
Xu Lan ◽  
Haibo Mi ◽  
Dawei Feng ◽  
Kele Xu ◽  
...  

Recently, deep learning has achieved state-of-the-art performance in more aspects than traditional shallow architecture-based machine-learning methods. However, in order to achieve higher accuracy, it is usually necessary to extend the network depth or ensemble the results of different neural networks. Increasing network depth or ensembling different networks increases the demand for memory resources and computing resources. This leads to difficulties in deploying depth-learning models in resource-constrained scenarios such as drones, mobile phones, and autonomous driving. Improving network performance without expanding the network scale has become a hot topic for research. In this paper, we propose a cross-architecture online-distillation approach to solve this problem by transmitting supplementary information on different networks. We use the ensemble method to aggregate networks of different structures, thus forming better teachers than traditional distillation methods. In addition, discontinuous distillation with progressively enhanced constraints is used to replace fixed distillation in order to reduce loss of information diversity in the distillation process. Our training method improves the distillation effect and achieves strong network-performance improvement. We used some popular models to validate the results. On the CIFAR100 dataset, AlexNet’s accuracy was improved by 5.94%, VGG by 2.88%, ResNet by 5.07%, and DenseNet by 1.28%. Extensive experiments were conducted to demonstrate the effectiveness of the proposed method. On the CIFAR10, CIFAR100, and ImageNet datasets, we observed significant improvements over traditional knowledge distillation.


Sign in / Sign up

Export Citation Format

Share Document