Particle Swarm Optimization based feature selection with novel fitness function for image steganalysis

Author(s):  
Vahid Rostami ◽  
Azar Shahmoradi Khiavi
2021 ◽  
Author(s):  
B Tran ◽  
Bing Xue ◽  
Mengjie Zhang

In machine learning, discretization and feature selection (FS) are important techniques for preprocessing data to improve the performance of an algorithm on high-dimensional data. Since many FS methods require discrete data, a common practice is to apply discretization before FS. In addition, for the sake of efficiency, features are usually discretized individually (or univariate). This scheme works based on the assumption that each feature independently influences the task, which may not hold in cases where feature interactions exist. Therefore, univariate discretization may degrade the performance of the FS stage since information showing feature interactions may be lost during the discretization process. Initial results of our previous proposed method [evolve particle swarm optimization (EPSO)] showed that combining discretization and FS in a single stage using bare-bones particle swarm optimization (BBPSO) can lead to a better performance than applying them in two separate stages. In this paper, we propose a new method called potential particle swarm optimization (PPSO) which employs a new representation that can reduce the search space of the problem and a new fitness function to better evaluate candidate solutions to guide the search. The results on ten high-dimensional datasets show that PPSO select less than 5% of the number of features for all datasets. Compared with the two-stage approach which uses BBPSO for FS on the discretized data, PPSO achieves significantly higher accuracy on seven datasets. In addition, PPSO obtains better (or similar) classification performance than EPSO on eight datasets with a smaller number of selected features on six datasets. Furthermore, PPSO also outperforms the three compared (traditional) methods and performs similar to one method on most datasets in terms of both generalization ability and learning capacity. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


2021 ◽  
Author(s):  
B Tran ◽  
Bing Xue ◽  
Mengjie Zhang

In machine learning, discretization and feature selection (FS) are important techniques for preprocessing data to improve the performance of an algorithm on high-dimensional data. Since many FS methods require discrete data, a common practice is to apply discretization before FS. In addition, for the sake of efficiency, features are usually discretized individually (or univariate). This scheme works based on the assumption that each feature independently influences the task, which may not hold in cases where feature interactions exist. Therefore, univariate discretization may degrade the performance of the FS stage since information showing feature interactions may be lost during the discretization process. Initial results of our previous proposed method [evolve particle swarm optimization (EPSO)] showed that combining discretization and FS in a single stage using bare-bones particle swarm optimization (BBPSO) can lead to a better performance than applying them in two separate stages. In this paper, we propose a new method called potential particle swarm optimization (PPSO) which employs a new representation that can reduce the search space of the problem and a new fitness function to better evaluate candidate solutions to guide the search. The results on ten high-dimensional datasets show that PPSO select less than 5% of the number of features for all datasets. Compared with the two-stage approach which uses BBPSO for FS on the discretized data, PPSO achieves significantly higher accuracy on seven datasets. In addition, PPSO obtains better (or similar) classification performance than EPSO on eight datasets with a smaller number of selected features on six datasets. Furthermore, PPSO also outperforms the three compared (traditional) methods and performs similar to one method on most datasets in terms of both generalization ability and learning capacity. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yuan-Yuan Wang ◽  
Huan Zhang ◽  
Chen-Hui Qiu ◽  
Shun-Ren Xia

The paper presents a novel approach for feature selection based on extreme learning machine (ELM) and Fractional-order Darwinian particle swarm optimization (FODPSO) for regression problems. The proposed method constructs a fitness function by calculating mean square error (MSE) acquired from ELM. And the optimal solution of the fitness function is searched by an improved particle swarm optimization, FODPSO. In order to evaluate the performance of the proposed method, comparative experiments with other relative methods are conducted in seven public datasets. The proposed method obtains six lowest MSE values among all the comparative methods. Experimental results demonstrate that the proposed method has the superiority of getting lower MSE with the same scale of feature subset or requiring smaller scale of feature subset for similar MSE.


2021 ◽  
Vol 18 (4) ◽  
pp. 1233-1238
Author(s):  
R. Sathya ◽  
L. R. Aravind Babu

Big data defines the state where the size, speed and kind of data go beyond a memory or executing capabilities for precise and timely decision-making. Big data analytics is integrated with ML and statistical methods for processing big data and recognizes the important data. At present times, the generation of online product reviews has exponentially increased at each and every second. These applications have resulted in developing the volumes of data which can be used for prediction and classification for decision making process. Compared with other models, various techniques are applied in solving the big data problem, feature selection (FS) is known to be an efficient method. FS operations could be exploring with the application of a subset of features which is related to the topic of précised definition of the existing datasets. Deplorably, search using this type of sub-sets results in the problems of combinatorial as well as maximum time consuming. The meta-heuristic approaches are typically employed to facilitate the choice of features. This paper presents an optimal extreme learning machine (ELM) based binary particle swarm optimization to precede the FS process. The proposed method develops a Fitness Function (FF) by applying ELM. And the best solution of the FF has been explored under the application of BPSO technique. For instance, the dataset of product review which are derived from Amazon including synthetic data, which is comprised with total of 235,000 positive and 147,000 negative review records is used. The experimental result implied that the ELM-BPSO technique is comparably best


Author(s):  
Midde Venkateswarlu Naik ◽  
D. Vasumathi ◽  
A.P. Siva Kumar

Aims: The proposed research work is on an evolutionary enhanced method for sentiment or emotion classification on unstructured review text in the big data field. The sentiment analysis plays a vital role for current generation of people for extracting valid decision points about any aspect such as movie ratings, education institute or politics ratings, etc. The proposed hybrid approach combined the optimal feature selection using Particle Swarm Optimization (PSO) and sentiment classification through Support Vector Machine (SVM). The current approach performance is evaluated with statistical measures, such as precision, recall, sensitivity, specificity, and was compared with the existing approaches. The earlier authors have achieved an accuracy of sentiment classifier in the English text up to 94% as of now. In the proposed scheme, an average accuracy of sentiment classifier on distinguishing datasets outperformed as 99% by tuning various parameters of SVM, such as constant c value and kernel gamma value in association with PSO optimization technique. The proposed method utilized three datasets, such as airline sentiment data, weather, and global warming datasets, that are publically available. The current experiment produced results that are trained and tested based on 10- Fold Cross-Validations (FCV) and confusion matrix for predicting sentiment classifier accuracy. Background: The sentiment analysis plays a vital role for current generation people for extracting valid decisions about any aspect such as movie rating, education institute or even politics ratings, etc. Sentiment Analysis (SA) or opinion mining has become fascinated scientifically as a research domain for the present environment. The key area is sentiment classification on semi-structured or unstructured data in distinguish languages, which has become a major research aspect. User-Generated Content [UGC] from distinguishing sources has been hiked significantly with rapid growth in a web environment. The huge user-generated data over social media provides substantial value for discovering hidden knowledge or correlations, patterns, and trends or sentiment extraction about any specific entity. SA is a computational analysis to determine the actual opinion of an entity which is expressed in terms of text. SA is also called as computation of emotional polarity expressed over social media as natural text in miscellaneous languages. Usually, the automatic superlative sentiment classifier model depends on feature selection and classification algorithms. Methods: The proposed work used Support vector machine as classification technique and particle swarm optimization technique as feature selection purpose. In this methodology, we tune various permutations and combination parameters in order to obtain expected desired results with kernel and without kernel technique for sentiment classification on three datasets, including airline, global warming, weather sentiment datasets, that are freely hosted for research practices. Results: In the proposed scheme, The proposed method has outperformed with 99.2% of average accuracy to classify the sentiment on different datasets, among other machine learning techniques. The attained high accuracy in classifying sentiment or opinion about review text proves superior effectiveness over existing sentiment classifiers. The current experiment produced results that are trained and tested based on 10- Fold Cross-Validations (FCV) and confusion matrix for predicting sentiment classifier accuracy. Conclusion: The objective of the research issue sentiment classifier accuracy has been hiked with the help of Kernel-based Support Vector Machine (SVM) based on parameter optimization. The optimal feature selection to classify sentiment or opinion towards review documents has been determined with the help of a particle swarm optimization approach. The proposed method utilized three datasets to simulate the results, such as airline sentiment data, weather sentiment data, and global warming data that are freely available datasets.


2021 ◽  
Vol 13 (13) ◽  
pp. 7152
Author(s):  
Mike Spiliotis ◽  
Alvaro Sordo-Ward ◽  
Luis Garrote

The Muskingum method is one of the widely used methods for lumped flood routing in natural rivers. Calibration of its parameters remains an active challenge for the researchers. The task has been mostly addressed by using crisp numbers, but fuzzy seems a reasonable alternative to account for parameter uncertainty. In this work, a fuzzy Muskingum model is proposed where the assessment of the outflow as a fuzzy quantity is based on the crisp linear Muskingum method but with fuzzy parameters as inputs. This calculation can be achieved based on the extension principle of the fuzzy sets and logic. The critical point is the calibration of the proposed fuzzy extension of the Muskingum method. Due to complexity of the model, the particle swarm optimization (PSO) method is used to enable the use of a simulation process for each possible solution that composes the swarm. A weighted sum of several performance criteria is used as the fitness function of the PSO. The function accounts for the inclusive constraints (the property that the data must be included within the produced fuzzy band) and for the magnitude of the fuzzy band, since large uncertainty may render the model non-functional. Four case studies from the references are used to benchmark the proposed method, including smooth, double, and non-smooth data and a complex, real case study that shows the advantages of the approach. The use of fuzzy parameters is closer to the uncertain nature of the problem. The new methodology increases the reliability of the prediction. Furthermore, the produced fuzzy band can include, to a significant degree, the observed data and the output of the existent crisp methodologies even if they include more complex assumptions.


Sign in / Sign up

Export Citation Format

Share Document