Multi-channel Classification Resonance Network*

Author(s):  
Joonhyuk Kim ◽  
Gyeong-Moon Park ◽  
Jong-Hwan Kim
2021 ◽  
Author(s):  
Xia Li ◽  
Jian Xiong ◽  
Peng Cheng ◽  
Zhiping Shi ◽  
Mingang Shan ◽  
...  

2017 ◽  
Vol 41 (5) ◽  
pp. 570-600 ◽  
Author(s):  
Belize A Lane ◽  
Gregory B Pasternack ◽  
Helen E Dahlke ◽  
Samuel Sandoval-Solis

To date, subreach-scale variations in flow width and bed elevation have rarely been included in channel classifications. Variability in topographic features of rivers, however, in conjunction with sediment supply and discharge produces a mosaic of channel forms that provides unique habitats for sensitive aquatic species. In this study we investigated the utility of topographic variability attributes (TVAs) in distinguishing channel types and dominant channel formation and maintenance processes in montane and lowland streams of the Sacramento River basin, California, USA. A stratified random survey of 161 stream sites was performed to ensure balanced sampling across groups of stream reaches with expected similar geomorphic settings. For each site surveyed, width and depth variability were measured at baseflow and bankfull stages, and then incorporated in a channel classification framework alongside traditional reach-averaged geomorphic attributes (e.g., channel slope, width-to-depth, confinement, and dominant substrate) to evaluate the significance of TVAs in differentiating channel types. In contrast to more traditional attributes such as slope and contributing area, which are often touted as the key indicators of hydrogeomorphic processes, bankfull width variance emerged as a first-order attribute for distinguishing channel types. A total of nine channel types were distinguished for the Sacramento Basin consisting of both previously identified and new channel types. The results indicate that incorporating TVAs in channel classification provides a quantitative basis for interpreting nonuniform as well as uniform geomorphic processes, which can improve our ability to distinguish linked channel forms and processes of geomorphic and ecological significance.


2015 ◽  
Vol 199 ◽  
pp. 207-215 ◽  
Author(s):  
M. Shore ◽  
P. Jordan ◽  
P.-E. Mellander ◽  
M. Kelly-Quinn ◽  
A.R. Melland

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiexiang Shao ◽  
Zifang Huang ◽  
Jingfan Yang ◽  
Yaolong Deng ◽  
Junlin Yang ◽  
...  

Abstract Background Due to the characteristics of neurofibromatosis type I (NF-1) scoliosis, the precise placement of pedicle screws still remains to be a challenge. Triggered screw electromyography (t-EMG) has been proved to exhibit high sensitivity to identify mal-positioned pedicle screws, but no previous study assessed the combination of t-EMG with O-arm-assisted pedicle screw placement in NF-1 scoliosis surgery. Objective To evaluate efficacy and safety for combination of t-EMG with O-arm-assisted pedicle screw placement in NF-1 scoliosis surgery. Materials and methods From March 2018 to April 2020, sixty-five NF-1 scoliosis patients underwent t-EMG and O-arm-assisted pedicle screw fixation were retrospectively reviewed. The channel classification system was applied to classify the pedicle morphology based on pedicle width measurement by preoperative computed tomography scans. The minimal t-EMG threshold for screw path inspection was used as 8 mA, and operative screw redirection was also recorded. All pedicle screws were verified using a second intraoperative O-arm scan. The correlation between demographic and clinical data with amplitude of t-EMG were also analyzed. Results A total of 652 pedicle screws (T10-S1) in 65 patients were analyzed. The incidence of an absent pedicle (channel classification type C or D morphology) was 150 (23%). Overall, abnormal t-EMG threshold was identified in 26 patients with 48 screws (7.4%), while 16 out of the 48 screws were classified as G0, 14 out of the 48 screws were classified as G1, and 18 out of the 48 screws were classified as G2. The screw redirection rate was 2.8% (18/652). It showed that t-EMG stimulation detected 3 unacceptable mal-positioned screws in 2 patients (G2) which were missed by O-arm scan. No screw-related neurological or vascular complications were observed. Conclusions Combination of t-EMG with O-arm-assisted pedicle screw placement was demonstrated to be a safe and effective method in NF-1 scoliosis surgery. The t-EMG could contribute to detecting the rupture of the medial wall which might be missed by O-arm scan. Combination of t-EMG with O-arm could be recommended for routine use of screw insertion in NF-1 scoliosis surgery.


2021 ◽  
Author(s):  
Arunanshu Mahapatro ◽  
V CH Sekhar Rao Rayavarapu

<div>Wireless sensor networks (WSNs) is one of the vital part of the Internet of Things (IoT) that allow to acquire and provide information from interconnected sensors. Localization-based services are among the most appealing applications associated to the IoT. The deployment of WSNs in the indoor environments and urban areas creates obstacles that lead to the Non-Line-of-Sight (NLOS) propagation. Additionally, the localization accuracy is minimized by the NLOS propagation. The main intention of this paper is to develop an anchor-free node localization approach in multi-sink WSN under NLOS conditions using three key phases such as LOS/NLOS channel classification, range estimation, and anchor-free node localization. The first phase adopts Heuristicbased Deep Neural Network (H-DNN) for LOS/NLOS channel classification. Further, the same H-DNN s used for the range estimation. The hidden neurons of DNN are optimized using the proposed Adaptive Separating Operator-based Elephant Herding Optimization (ASO-EHO) algorithm. The node localization is formulated as a multi-objective optimization problem. The objectives such as localization error, hardware cost, and energy overhead are taken into consideration. ASO-EHO is used for node localization. The suitability of the proposed anchor-free node localization model is validated by comparing over the existing models with diverse counts of nodes. </div>


Sign in / Sign up

Export Citation Format

Share Document