Load balancing using multipath routing in network functions virtualization

Author(s):  
Tuan-Minh Pham ◽  
Linh Manh Pham
Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 323
Author(s):  
Marwa A. Abdelaal ◽  
Gamal A. Ebrahim ◽  
Wagdy R. Anis

The widespread adoption of network function virtualization (NFV) leads to providing network services through a chain of virtual network functions (VNFs). This architecture is called service function chain (SFC), which can be hosted on top of commodity servers and switches located at the cloud. Meanwhile, software-defined networking (SDN) can be utilized to manage VNFs to handle traffic flows through SFC. One of the most critical issues that needs to be addressed in NFV is VNF placement that optimizes physical link bandwidth consumption. Moreover, deploying SFCs enables service providers to consider different goals, such as minimizing the overall cost and service response time. In this paper, a novel approach for the VNF placement problem for SFCs, called virtual network functions and their replica placement (VNFRP), is introduced. It tries to achieve load balancing over the core links while considering multiple resource constraints. Hence, the VNF placement problem is first formulated as an integer linear programming (ILP) optimization problem, aiming to minimize link bandwidth consumption, energy consumption, and SFC placement cost. Then, a heuristic algorithm is proposed to find a near-optimal solution for this optimization problem. Simulation studies are conducted to evaluate the performance of the proposed approach. The simulation results show that VNFRP can significantly improve load balancing by 80% when the number of replicas is increased. Additionally, VNFRP provides more than a 54% reduction in network energy consumption. Furthermore, it can efficiently reduce the SFC placement cost by more than 67%. Moreover, with the advantages of a fast response time and rapid convergence, VNFRP can be considered as a scalable solution for large networking environments.


2020 ◽  
Vol 169 ◽  
pp. 107081
Author(s):  
Seyedeh Mina Hosseini Ghazvini ◽  
Akbar Ghaffarpour Rahbar ◽  
Behrooz Alizadeh

2021 ◽  
Vol 38 (1-2) ◽  
pp. 1-45
Author(s):  
Georgios P. Katsikas ◽  
Tom Barbette ◽  
Dejan Kostić ◽  
JR. Gerald Q. Maguire ◽  
Rebecca Steinert

Deployment of 100Gigabit Ethernet (GbE) links challenges the packet processing limits of commodity hardware used for Network Functions Virtualization (NFV). Moreover, realizing chained network functions (i.e., service chains) necessitates the use of multiple CPU cores, or even multiple servers, to process packets from such high speed links. Our system Metron jointly exploits the underlying network and commodity servers’ resources: ( i ) to offload part of the packet processing logic to the network, ( ii )  by using smart tagging to setup and exploit the affinity of traffic classes, and ( iii )  by using tag-based hardware dispatching to carry out the remaining packet processing at the speed of the servers’ cores, with zero inter-core communication. Moreover, Metron transparently integrates, manages, and load balances proprietary “blackboxes” together with Metron service chains. Metron realizes stateful network functions at the speed of 100GbE network cards on a single server, while elastically and rapidly adapting to changing workload volumes. Our experiments demonstrate that Metron service chains can coexist with heterogeneous blackboxes, while still leveraging Metron’s accurate dispatching and load balancing. In summary, Metron has ( i )  2.75–8× better efficiency, up to ( ii )  4.7× lower latency, and ( iii )  7.8× higher throughput than OpenBox, a state-of-the-art NFV system.


Sign in / Sign up

Export Citation Format

Share Document