Interpretation of the task status of a gripper from tactile sensor data

Author(s):  
C.S. Vaidyanathan ◽  
H.C. Wood
Keyword(s):  
Robotica ◽  
1988 ◽  
Vol 6 (1) ◽  
pp. 31-34 ◽  
Author(s):  
R. Andrew Russell

SUMMARYThis paper describes a novel tactile sensor array designed to provide information about the material constitution and shape of objects held by a robot manipulator. The sensor is modeled on the thermal touch sense which enables humans to distinguish between different materials based on how warm or cold they feel. Some results are presented and methods of analysing the sensor data are discussed.


Author(s):  
Snehal Dikhale ◽  
Karankumar Patel ◽  
Daksh Dhingra ◽  
Itoshi Naramura ◽  
Akinobu Hayashi ◽  
...  

2017 ◽  
Vol 263 ◽  
pp. 677-686 ◽  
Author(s):  
Eric Fujiwara ◽  
Yu Tzu Wu ◽  
Murilo Ferreira Marques dos Santos ◽  
Egont Alexandre Schenkel ◽  
Carlos Kenichi Suzuki

Author(s):  
Martin Richard ◽  
Rocky S. Taylor

Tactile sensor data collected during the Japan Ocean Industries Association (JOIA) medium-scale field indentation test program provide detailed information about spatial and temporal distributions of contact pressures during ice crushing. The localization of contact into high pressure zones (hpzs) through which the majority of loads are transmitted to the structure is an important feature of these data. For all but the slowest interaction rates, non-simultaneous failure is observed, with linear distributions of hpzs comprising a total contact area on the order of 10% of the nominal interaction area (structure width × ice thickness). To improve understanding of the nature of individual hpzs during compressive ice failure, a new approach to analyzing tactile sensor data has been developed. Analysis algorithms developed for automatic hpz detection and tracking are discussed. Issues associated with pressure threshold value definition and selection are considered. Probabilistic descriptions of high pressure zone attributes based on analysis of JOIA field measurements are presented. The development of a probabilistic ice load model based on these hpz data is detailed in a companion paper.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1458
Author(s):  
Andrea Cirillo ◽  
Gianluca Laudante ◽  
Salvatore Pirozzi

At present, the tactile perception is essential for robotic applications when performing complex manipulation tasks, e.g., grasping objects of different shapes and sizes, distinguishing between different textures, and avoiding slips by grasping an object with a minimal force. Considering Deformable Linear Object manipulation applications, this paper presents an efficient and straightforward method to allow robots to autonomously work with thin objects, e.g., wires, and to recognize their features, i.e., diameter, by relying on tactile sensors developed by the authors. The method, based on machine learning algorithms, is described in-depth in the paper to make it easily reproducible by the readers. Experimental tests show the effectiveness of the approach that is able to properly recognize the considered object’s features with a recognition rate up to 99.9%. Moreover, a pick and place task, which uses the method to classify and organize a set of wires by diameter, is presented.


Sign in / Sign up

Export Citation Format

Share Document