A consistent null-space based approach to inverse kinematics of redundant robots

Author(s):  
Y.-C. Chen ◽  
I.D. Walker
Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Paolo Di Lillo ◽  
Gianluca Antonelli ◽  
Ciro Natale

SUMMARY Control algorithms of many Degrees-of-Freedom (DOFs) systems based on Inverse Kinematics (IK) or Inverse Dynamics (ID) approaches are two well-known topics of research in robotics. The large number of DOFs allows the design of many concurrent tasks arranged in priorities, that can be solved either at kinematic or dynamic level. This paper investigates the effects of modeling errors in operational space control algorithms with respect to uncertainties affecting knowledge of the dynamic parameters. The effects on the null-space projections and the sources of steady-state errors are investigated. Numerical simulations with on-purpose injected errors are used to validate the thoughts.


Robotica ◽  
1986 ◽  
Vol 4 (4) ◽  
pp. 263-267 ◽  
Author(s):  
Ronald L. Huston ◽  
Timothy P. King

SUMMARYThe dynamics of “simple, redundant robots” are developed. A “redundant” robot is a robot whose degrees of freedom are greater than those needed to perform a given kinetmatic task. A “simple” robot is a robot with all joints being revolute joints with axes perpendicular or parallel to the arm segments. A general formulation, and a solution algorithm, for the “inverse kinematics problem” for such systems, is presented. The solution is obtained using orthogonal complement arrays which in turn are obtained from a “zero-eigenvalues” algorithm. The paper concludes with an assertion that this solution, called the “natural dynamics solution,” is optimal in that it requires the least energy to drive the robot.


Author(s):  
G. Bhavani ◽  
K. Harish Kumar ◽  
K. S. Raghuram ◽  
Hari Shankar Bendu

2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Henrique Simas ◽  
Raffaele Di Gregorio

The extended Jacobian is a technique for solving the redundancy of redundant robots. It is based on the definition of secondary tasks, through constraint functions that are added to the mapping between joint rates and end-effector's twist. Several approaches showed its potential, applications, and limitations. In general, the constraint functions are a linear combination of basic functions with constant coefficients. This paper proposes the use of adaptive coefficients in such functions by using the conditioning index of the extended Jacobian as a quality measure. A good conditioning index of the extended Jacobian keeps the robot far from singularities and contributes to the solution of the inverse kinematics. In this paper, initially, the extended Jacobian and the proposed algorithm are discussed, and then, two tests in different circumstances are presented in order to validate the proposal.


Robotica ◽  
2013 ◽  
Vol 31 (7) ◽  
pp. 1155-1167 ◽  
Author(s):  
Hamid Sadeghian ◽  
Luigi Villani ◽  
Mehdi Keshmiri ◽  
Bruno Siciliano

SUMMARYThis paper presents a dynamic-level control algorithm to meet simultaneously multiple desired tasks based on allocated priorities for redundant robotic systems. It is shown that this algorithm can be treated as a general framework to achieve control over the whole body of the robot. The control law is an extension of the well-known acceleration-based control to the redundant robots, and considers also possible interactions with the environment occurring at any point of the robot body. The stability of this algorithm is shown and some of the previously developed results are formulated using this approach. To handle the interaction on robot body, null space impedance control is developed within the multi-priority framework. The effectiveness of the proposed approaches is evaluated by means of computer simulation.


Sign in / Sign up

Export Citation Format

Share Document