Analysis of nonlinear neural network impedance force control for robot manipulators

Author(s):  
Seul Jung ◽  
T.C. Hsia
2021 ◽  
Vol 6 (2) ◽  
pp. 2814-2821
Author(s):  
Sung-Woo Kim ◽  
Buyoun Cho ◽  
Seunghoon Shin ◽  
Jun-Ho Oh ◽  
Jemin Hwangbo ◽  
...  

2021 ◽  
pp. 1-15
Author(s):  
Qinyu Mei ◽  
Ming Li

Aiming at the construction of the decision-making system for sports-assisted teaching and training, this article first gives a deep convolutional neural network model for sports-assisted teaching and training decision-making. Subsequently, In order to meet the needs of athletes to assist in physical exercise, a squat training robot is built using a self-developed modular flexible cable drive unit, and its control system is designed to assist athletes in squatting training in sports. First, the human squat training mechanism is analyzed, and the overall structure of the robot is determined; second, the robot force servo control strategy is designed, including the flexible cable traction force planning link, the lateral force compensation link and the establishment of a single flexible cable passive force controller; In order to verify the effect of robot training, a single flexible cable force control experiment and a man-machine squat training experiment were carried out. In the single flexible cable force control experiment, the suppression effect of excess force reached more than 50%. In the squat experiment under 200 N, the standard deviation of the system loading force is 7.52 N, and the dynamic accuracy is above 90.2%. Experimental results show that the robot has a reasonable configuration, small footprint, stable control system, high loading accuracy, and can assist in squat training in physical education.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 287
Author(s):  
Byeongjin Kim ◽  
Soohyun Kim

Walking algorithms using push-off improve moving efficiency and disturbance rejection performance. However, the algorithm based on classical contact force control requires an exact model or a Force/Torque sensor. This paper proposes a novel contact force control algorithm based on neural networks. The proposed model is adapted to a linear quadratic regulator for position control and balance. The results demonstrate that this neural network-based model can accurately generate force and effectively reduce errors without requiring a sensor. The effectiveness of the algorithm is assessed with the realistic test model. Compared to the Jacobian-based calculation, our algorithm significantly improves the accuracy of the force control. One step simulation was used to analyze the robustness of the algorithm. In summary, this walking control algorithm generates a push-off force with precision and enables it to reject disturbance rapidly.


Sign in / Sign up

Export Citation Format

Share Document