A fast path planning-and-tracking control for wheeled mobile robots

Author(s):  
T.H. Lee ◽  
H.K. Lam ◽  
F.H.F. Leung ◽  
P.K.S. Tam
Author(s):  
Radu-Emil Precup ◽  
Emil-Ioan Voisan ◽  
Emil M. Petriu ◽  
Marius L. Tomescu ◽  
Radu-Codrut David ◽  
...  

This paper proposes two applications of Grey Wolf Optimizer (GWO) algorithms to a path planning (PaPl) problem and a Proportional-Integral (PI)-fuzzy controller tuning problem. Both optimization problems solved by GWO algorithms are explained in detail. An off-line GWO-based PaPl approach for Nonholonomic Wheeled Mobile Robots (NWMRs) in static environments is proposed. Once the PaPl problem is solved resulting in the reference trajectory of the robots, the paper also suggests a GWO-based approach to tune cost-effective PI-fuzzy controllers in tracking control problem for NWMRs. The experimental results are demonstrated through simple multiagent settings conducted on the nRobotic platform developed at the Politehnica University of Timisoara, Romania, and they prove both the effectiveness of the two GWO-based approaches and major performance improvement.


2011 ◽  
Vol 55-57 ◽  
pp. 1195-1199 ◽  
Author(s):  
Min Zuo ◽  
Guang Ping Zeng ◽  
Xu Yan Tu

Trajectory-tracking problem of wheeled mobile robots is investigated. Adaptive control scheme utilized has only one control signal. The control input gives out the velocity increments which will be utilized to adjust the pose of WMR so as to track the desired trajectories. The controller adopted is simple to realize and easy to tune the parameters, which is benefit to real applications. Numerical simulation results show that the control scheme is valid.


Sign in / Sign up

Export Citation Format

Share Document