Path planning and control of functionally graded materials for rapid tooling

Author(s):  
Ren C. Luo ◽  
Yen Lin Pan ◽  
Chen Jun Wang ◽  
Zhong Hong Huang
2014 ◽  
Vol 20 (6) ◽  
pp. 511-522 ◽  
Author(s):  
Pierre Muller ◽  
Jean-Yves Hascoet ◽  
Pascal Mognol

Purpose – The purpose of this paper is to propose an evaluation of toolpaths for additive manufacturing of functionally graded materials (FGM) parts to ensure the manufacturing of parts in compliance with the desired material distribution. The selection of an appropriate path strategy is critical when manufacturing FGM parts. Design/methodology/approach – The selection of a path strategy is based on a process modeling and an additive laser melting (ALM) system control. To do that, some path strategies are selected, simulated and compared. Findings – The comparison of some paths strategies was applied on a study case from the biomedical field. Test-parts were manufactured and analyzed. Results show a good correlation between the simulated and the deposited material distributions. The evaluation of toolpaths based on the process modeling and the system control was validated. Originality/value – Nowadays, FGM parts manufactured with ALM processes are not functional. To move from these samples to functional parts, it is necessary to have a global approach of the manufacturing procedure centered on the path planning. Few methodologies of path planning are adapted to FGM parts but are still limited.


Author(s):  
Ibrahim T. Ozbolat ◽  
A. K. M. B. Khoda

In this paper, a novel path planning approach is proposed to generate porous structures with internal features. The interconnected and continuous deposition path is designed to control the internal material composition in a functionally graded manner. The proposed layer-based algorithmic solutions generate a bilayer pattern of zigzag and spiral toolpath consecutively to construct heterogeneous three-dimensional (3D) objects. The proposed strategy relies on constructing Voronoi diagrams for all bounding curves in each layer to decompose the geometric domain and discretizing the associated Voronoi regions with ruling lines between the boundaries of the associated Voronoi regions. To avoid interference among ruling lines, reorientation and relaxation techniques are introduced to establish matching for continuous zigzag path planning. In addition, arc fitting is used to reduce over-deposition, allowing nonstop deposition at sharp turns. Layer-by-layer deposition progresses through consecutive layers of a ruling-line-based zigzag pattern followed by a spiral path deposition. A biarc fitting technique is employed through isovalues of ruling lines to generate G1 continuity along the spiral deposition path plan. Functionally graded material properties are then mapped based on a parametric distance-based weighting technique. The proposed approach enables elimination or minimization of over-deposition of materials, nonuniformity on printed strands and discontinuities on the toolpath, which are shortcomings of traditional zigzag-based toolpath plan in additive manufacturing (AM). In addition, it provides a practical path for printing functionally graded materials.


Author(s):  
Ibrahim T. Ozbolat

This study proposes a new path planning methodology to control functionally graded materials in hollowed scaffold printing for tissue engineering. Based on ruled surface construction from our earlier work [1], ruling lines are postprocessed for continuous path planning with uniform material deposition. Besides, arc fitting is used to reduce over-deposition by enabling non-stop deposition at the sharp turns. Layer-by-layer deposition is progressed through consecutive layers of ruling line based zigzag pattern followed by a biarc fitted spiral pattern. Functionally graded material properties are then mapped based on parametric distances from hollow features.


Materialia ◽  
2020 ◽  
Vol 11 ◽  
pp. 100689 ◽  
Author(s):  
Brandon Bocklund ◽  
Lourdes D. Bobbio ◽  
Richard A. Otis ◽  
Allison M. Beese ◽  
Zi-Kui Liu

2019 ◽  
Vol 182 ◽  
pp. 107975 ◽  
Author(s):  
O.V. Eliseeva ◽  
T. Kirk ◽  
P. Samimi ◽  
R. Malak ◽  
R. Arróyave ◽  
...  

Author(s):  
Carlos Alberto Dutra Fraga Filho ◽  
Fernando César Meira Menandro ◽  
Rivânia Hermógenes Paulino de Romero ◽  
Juan Sérgio Romero Saenz

Sign in / Sign up

Export Citation Format

Share Document