An adaptive law for slope identification and force position regulation using motion variables

Author(s):  
Y. Karayiannidis ◽  
Z. Doulgeri
Mechatronics ◽  
2021 ◽  
Vol 76 ◽  
pp. 102573
Author(s):  
Enrico Franco ◽  
Arnau Garriga Casanovas ◽  
Jacky Tang ◽  
Ferdinando Rodriguez y Baena ◽  
Alessandro Astolfi

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110105
Author(s):  
Xiaoyu Su ◽  
Bin Lin ◽  
Shuai Liu

The half-car suspension has the coupling of pitch angle and front and rear suspension. Especially when the suspension model has a series of uncertainties, the traditional linear control method is difficult to be applied to the half-car suspension model. At present, there is no systematic method to solve the suspension power. According to the energy storage characteristics of the elastic components of the suspension, the power calculation formula is proposed in this paper. This paper proposes a composite adaptive backstepping control scheme for the half-car active suspension systems. In this method, the correlation information between the output error and the parameter estimation error is used to construct the adaptive law. According to the energy storage characteristics of the elastic components of the suspension, the power calculation formula is introduced. The compound adaptive law and the ordinary adaptive law have good disturbance suppression, both of which can solve the pitching angle problem of the semi-car suspension, but the algorithm of the compound adaptive law is superior in effect. In terms of vehicle comfort, the algorithm of the general adaptive law can achieve stability quickly, but compared with the composite adaptive law, its peak value and jitter are higher, while the algorithm of the composite adaptive law is relatively gentle and has better adaptability to human body. In terms of vehicle handling, both control algorithms can maintain driving safety under road excitation, and the compound adaptive algorithm appears to have more advantages. Compared with the traditional adaptive algorithm, the power consumption of the composite adaptive algorithm is relatively lower than that of the former in the whole process. The simulation results show that the ride comfort, operating stability and safety of the vehicle can be effectively improved by the composite adaptive backstepping controller, and the composite adaptive algorithm is more energy-saving than the conventional adaptive algorithm based on projection operator.


2021 ◽  
Vol 116 ◽  
pp. 104927
Author(s):  
Isaac Gandarilla ◽  
Víctor Santibáñez ◽  
Jesús Sandoval ◽  
Jose Guadalupe Romero

2005 ◽  
Vol 152 (4) ◽  
pp. 465-476 ◽  
Author(s):  
J. De León-Morales ◽  
R. Castro-Linares ◽  
O. Huerta Guevara

Author(s):  
Tsung-Chih Lin ◽  
Yu-Chen Lin ◽  
Majid Moradi Zirkohi ◽  
Hsi-Chun Huang

In this paper, a novel direct adaptive fuzzy moving sliding mode proportional integral (PI) tracking control of a three-dimensional (3D) overhead crane which is modeled by five highly nonlinear second-order ordinary differential equations is proposed. The fast and robust position regulation and antiswing control can be achieved based on the proposed approach. Due to universal approximation theorem, fuzzy control provides nonlinear controller, i.e., fuzzy logic controllers, to perform the unknown nonlinear control actions. Simultaneously, in order to achieve fast and robust regulation and to enhance robustness in the presence of disturbance and parameter variations, moving sliding mode control (SMC) is introduced to tradeoff between reaching phase and sliding phase. Hence, the sliding surface is moved by changing the magnitude of the slope by adaptive law and varying the intercept by tuning algorithm. Simulations performed using a scaled 3D mathematical model of the crane confirm that the proposed control scheme can keep the horizontal position of the payload invariable and suppress the swing of the payload effectively during the hoisting or lowing process.


2021 ◽  
Author(s):  
Manjeet Tummalapalli

This project proposes a new SCARA variant with 4 degree of freedom. The proposed variant is achieved by swapping joint 2 and joint 3 of the standard SCARA robots. An adaptive controller is defined based on the advantages and disadvantages of PD, and SMC controllers.The purpose of the project is to understand the dynamics of the variant and to track the performance for trajectories. Simulations for tracking performance are carried under linear and circular trajectories. The variant is studied over the three controllers; PD, PD-SMC and A-PD-SMC. The variant under the adaptive controller is most efficient in terms of tracking performance and the control inputs to the system. The system is simulated under high speed and with the influence of friction at the joints. The control gains are held constant for both the trajectories and hence the controller is able to perform good under changing trajectories. Due to the use of the adaptive law, the system is at the ease of implementation and since no priori knowledge if the system is needed, it is model free. Therefore, the proposed adaptive PD-SMC has proven to provide good, robust trajectory tracking.


Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 412 ◽  
Author(s):  
Naige Wang ◽  
Guohua Cao ◽  
Lu Yan ◽  
Lei Wang

The modeling and control of the multi-rope parallel suspension lifting system (MPSLS) are investigated in the presence of different and spatial distributed tensions; unknown boundary disturbances; and multiple constraints, including time varying geometric constraint, input saturation, and output constraint. To describe the system dynamics more accurately, the MPSLS is modelled by a set of partial differential equations and ordinary differential equations (PDEs-ODEs) with multiple constraints, which is a nonhomogeneous and coupled PDEs-ODEs, and makes its control more difficult. Adaptive boundary control is a recommended method for position regulation and vibration degradation of the MPSLS, where adaptation laws and a boundary disturbance observer are formulated to handle system uncertainties. The system stability is rigorously proved by using Lyapunov’s direct method, and the position and vibration eventually diminish to a bounded neighborhood of origin. The original PDEs-ODEs are solved by finite difference method, and the multiple constraints problem is processed simultaneously. Finally, the performance of the proposed control is demonstrated by both the results of ADAMS simulation and numerical calculation.


Author(s):  
David Alonso Pimienta Berrelleza ◽  
Jesus Sandoval ◽  
Marco Antonio Castro Liera ◽  
Iliana Castro Liera

Sign in / Sign up

Export Citation Format

Share Document