Human-machine interaction through object using robot arm with tactile sensors

Author(s):  
Kitti Suwanratchatamanee ◽  
Mitsuharu Matsumoto ◽  
Shuji Hashimoto
2021 ◽  
pp. 113240
Author(s):  
Weibing Zhong ◽  
Xiaojuan Ming ◽  
Weixin Li ◽  
Kangyu Jia ◽  
Haiqing Jiang ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
pp. 34-44
Author(s):  
Maike Klein

Within both popular media and (some) scientific contexts, affective and ‘emotional’ machines are assumed to already exist. The aim of this paper is to draw attention to some of the key conceptual and theoretical issues raised by the ostensible affectivity. My investigation starts with three robotic encounters: a robot arm, the first (according to media) ‘emotional’ robot, Pepper, and Mako, a robotic cat. To make sense of affectivity in these encounters, I discuss emotion theoretical implications for affectivity in human-machine-interaction. Which theories have been implemented in the creation of the encountered robots? Being aware that in any given robot, there is no strict implementation of one single emotion theory, I will focus on two commonly used emotion theories: Russell and Mehrabian’s Three-Factor Theory of Emotion (the computational models derived from that theory are known as PAD models) and Ekman’s Basic Emotion Theory. An alternative way to approach affectivity in artificial systems is the Relational Approach of Damiano et al. which emphasizes human-robot-interaction in social robotics. In considering this alternative I also raise questions about the possibility of affectivity in robot-robot-relations.


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-32 ◽  
Author(s):  
Kirthika Senthil Kumar ◽  
Po-Yen Chen ◽  
Hongliang Ren

Flexible and stretchable tactile sensors that are printable, nonplanar, and dynamically morphing are emerging to enable proprioceptive interactions with the unstructured surrounding environment. Owing to its varied range of applications in the field of wearable electronics, soft robotics, human-machine interaction, and biomedical devices, it is required of these sensors to be flexible and stretchable conforming to the arbitrary surfaces of their stiff counterparts. The challenges in maintaining the fundamental features of these sensors, such as flexibility, sensitivity, repeatability, linearity, and durability, are tackled by the progress in the fabrication techniques and customization of the material properties. This review is aimed at summarizing the recent progress of rapid prototyping of sensors, printable material preparation, required printing properties, flexible and stretchable mechanisms, and promising applications and highlights challenges and opportunities in this research paradigm.


2021 ◽  
pp. 1-9
Author(s):  
Harshadkumar B. Prajapati ◽  
Ankit S. Vyas ◽  
Vipul K. Dabhi

Face expression recognition (FER) has gained very much attraction to researchers in the field of computer vision because of its major usefulness in security, robotics, and HMI (Human-Machine Interaction) systems. We propose a CNN (Convolutional Neural Network) architecture to address FER. To show the effectiveness of the proposed model, we evaluate the performance of the model on JAFFE dataset. We derive a concise CNN architecture to address the issue of expression classification. Objective of various experiments is to achieve convincing performance by reducing computational overhead. The proposed CNN model is very compact as compared to other state-of-the-art models. We could achieve highest accuracy of 97.10% and average accuracy of 90.43% for top 10 best runs without any pre-processing methods applied, which justifies the effectiveness of our model. Furthermore, we have also included visualization of CNN layers to observe the learning of CNN.


Author(s):  
Xiaochen Zhang ◽  
Lanxin Hui ◽  
Linchao Wei ◽  
Fuchuan Song ◽  
Fei Hu

Electric power wheelchairs (EPWs) enhance the mobility capability of the elderly and the disabled, while the human-machine interaction (HMI) determines how well the human intention will be precisely delivered and how human-machine system cooperation will be efficiently conducted. A bibliometric quantitative analysis of 1154 publications related to this research field, published between 1998 and 2020, was conducted. We identified the development status, contributors, hot topics, and potential future research directions of this field. We believe that the combination of intelligence and humanization of an EPW HMI system based on human-machine collaboration is an emerging trend in EPW HMI methodology research. Particular attention should be paid to evaluating the applicability and benefits of the EPW HMI methodology for the users, as well as how much it contributes to society. This study offers researchers a comprehensive understanding of EPW HMI studies in the past 22 years and latest trends from the evolutionary footprints and forward-thinking insights regarding future research.


ATZ worldwide ◽  
2021 ◽  
Vol 123 (3) ◽  
pp. 46-49
Author(s):  
Tobias Hesse ◽  
Michael Oehl ◽  
Uwe Drewitz ◽  
Meike Jipp

Sign in / Sign up

Export Citation Format

Share Document