scholarly journals Evaluation of a spatial language interpretation framework for natural human-robot interaction with older adults

Author(s):  
Juan Fasola ◽  
Maja J. Mataric
2021 ◽  
Vol 11 (21) ◽  
pp. 10136
Author(s):  
Anouk van Maris ◽  
Nancy Zook ◽  
Sanja Dogramadzi ◽  
Matthew Studley ◽  
Alan Winfield ◽  
...  

This work explored the use of human–robot interaction research to investigate robot ethics. A longitudinal human–robot interaction study was conducted with self-reported healthy older adults to determine whether expression of artificial emotions by a social robot could result in emotional deception and emotional attachment. The findings from this study have highlighted that currently there appears to be no adequate tools, or the means, to determine the ethical impact and concerns ensuing from long-term interactions between social robots and older adults. This raises the question whether we should continue the fundamental development of social robots if we cannot determine their potential negative impact and whether we should shift our focus to the development of human–robot interaction assessment tools that provide more objective measures of ethical impact.


Author(s):  
Wendy A. Rogers ◽  
Travis Kadylak ◽  
Megan A. Bayles

Objective We reviewed human–robot interaction (HRI) participatory design (PD) research with older adults. The goal was to identify methods used, determine their value for design of robots with older adults, and provide guidance for best practices. Background Assistive robots may promote aging-in-place and quality of life for older adults. However, the robots must be designed to meet older adults’ specific needs and preferences. PD and other user-centered methods may be used to engage older adults in the robot development process to accommodate their needs and preferences and to assure usability of emergent assistive robots. Method This targeted review of HRI PD studies with older adults draws on a detailed review of 26 articles. Our assessment focused on the HRI methods and their utility for use with older adults who have a range of needs and capabilities. Results Our review highlighted the importance of using mixed methods and including multiple stakeholders throughout the design process. These approaches can encourage mutual learning (to improve design by developers and to increase acceptance by users). We identified key phases used in HRI PD workshops (e.g., initial interview phase, series of focus groups phase, and presentation phase). These approaches can provide inspiration for future efforts. Conclusion HRI PD strategies can support designers in developing assistive robots that meet older adults’ needs, capabilities, and preferences to promote acceptance. More HRI research is needed to understand potential implications for aging-in-place. PD methods provide a promising approach.


AI & Society ◽  
2021 ◽  
Author(s):  
Dafna Burema

AbstractThis paper argues that there is a need to critically assess bias in the representations of older adults in the field of Human–Robot Interaction. This need stems from the recognition that technology development is a socially constructed process that has the potential to reinforce problematic understandings of older adults. Based on a qualitative content analysis of 96 academic publications, this paper indicates that older adults are represented as; frail by default, independent by effort; silent and technologically illiterate; burdensome; and problematic for society. Within these documents, few counternarratives are present that do not take such essentialist representations. In these texts, the goal of social robots in elder care is to “enable” older adults to “better” themselves. The older body is seen as “fixable” with social robots, reinforcing an ageist and neoliberal narrative: older adults are reduced to potential care receivers in ways that shift care responsibilities away from the welfare state onto the individual.


Author(s):  
Roberta Bevilacqua ◽  
Elisa Felici ◽  
Filippo Cavallo ◽  
Giulio Amabili ◽  
Elvira Maranesi

The aim of this paper was to explore the psychosocial determinants that lead to acceptability and willingness to interact with a service robot, starting with an analysis of older users’ behaviors toward the Robot-Era platform, in order to provide strategies for the promotion of social assistive robotics. A mixed-method approach was used to collect information on acceptability, usability, and human–robot interaction, by analyzing nonverbal behaviors, emotional expressions, and verbal communication. The study involved 35 older adults. Twenty-two were women and thirteen were men, aged 73.8 (±6) years old. Video interaction analysis was conducted to capture the users’ gestures, statements, and expressions. A coded scheme was designed on the basis of the literature in the field. Percentages of time and frequency of the selected events are reported. The statements of the users were collected and analyzed. The results of the behavioral analysis reveal a largely positive attitude, inferred from nonverbal clues and nonverbal emotional expressions. The results highlight the need to provide robotic solutions that respect the tasks they offer to the users It is necessary to give older consumers dedicated training in technological literacy to guarantee proper, long-lasting, and successful use.


2017 ◽  
Author(s):  
◽  
Zhiyu Huo

This dissertation investigates the methods to enable a robot to interact with human using spatial language. A prototype system of human-robot interaction using spatial language running on an autonomous robot is proposed in the dissertation. The system includes two complementary works. One is to control the robot by human natural spatial language to find the target object to fetch it. Another work is to generate a natural spatial language description to describe a target object in the robot working environment. The first task is called spatial language grounding and the second work is named as spatial language generation. The spatial language grounding and generation are both end-to-end process which means the system will determine the output only by the natural language command from a human during the interaction and the raw perception data collected from the environment. Furniture recognizers are designed for the robot to detect the environment during the tasks. A hierarchy system is designed to translate the human spatial language to the symbolic grounding model and then to the robot actions. To reduce the ambiguity in the interaction, a human demonstration system is designed to collect the spatial concept of the human user for building the robot behavior policies under different grounding models. A language generation system trained by real human spatial language corpus is proposed to automatically edit spatial descriptions of the location of a target object. All the modules in the system are evaluated in the physical environment, and a 3D robot simulator developed on ROS and GAZEBO.


Sign in / Sign up

Export Citation Format

Share Document