Radiation Pattern Restoration of Closely-placed Cross-band Dipole Antennas Using Characteristic Mode Analysis

Author(s):  
Huiwen Sheng ◽  
Zhi Ning Chen
2021 ◽  
Author(s):  
Bing Xiao

Small linear dipole antennas with a multi-band characteristic are necessary for many strip or bar shaped gateway devices of the Internet of Things (IoT), for the connectivity in various communication protocols. However, the conventional methodology of designing multi-band dipole antennas is generally empirically based. More frequency bands usually mean even more arms/slots, which results in an increasingly bulky antenna. In this paper, we will introduce an algorithm of using the fewest arms to design a multi-band linear dipole antenna. This algorithm is based on sharing arms after the effective ranges of mode excitation are determined by characteristic mode analysis (CMA). By this algorithm, an exemplified designed penta-band dipole antenna is effective in covering 433, 868, 1176, 1575, and 2450 MHz bands for LPWAN, GNSS, and ISM applications, with only 2.5 pairs of arms. 50% of arms are reduced in comparison to traditional methods. This algorithm is convenient in practical dipole antenna design, and greatly simplifies the antenna structure so that they could be mounted into small IoT devices.


2021 ◽  
Author(s):  
Bing Xiao

Small linear dipole antennas with a multi-band characteristic are necessary for many strip or bar shaped gateway devices of the Internet of Things (IoT), for the connectivity in various communication protocols. However, the conventional methodology of designing multi-band dipole antennas is generally empirically based. More frequency bands usually mean even more arms/slots, which results in an increasingly bulky antenna. In this paper, we will introduce an algorithm of using the fewest arms to design a multi-band linear dipole antenna. This algorithm is based on sharing arms after the effective ranges of mode excitation are determined by characteristic mode analysis (CMA). By this algorithm, an exemplified designed penta-band dipole antenna is effective in covering 433, 868, 1176, 1575, and 2450 MHz bands for LPWAN, GNSS, and ISM applications, with only 2.5 pairs of arms. 50% of arms are reduced in comparison to traditional methods. This algorithm is convenient in practical dipole antenna design, and greatly simplifies the antenna structure so that they could be mounted into small IoT devices.


2017 ◽  
Vol 3 (3) ◽  
pp. 140
Author(s):  
Suci Rahmatia ◽  
Putri Wulandari ◽  
Nurul Khadiko ◽  
Fitria Gani Sulistya

<p><em>Abstrak </em><strong> - Antena merupakan alat pemancar yang akrab dengan aktifitas sehari-hari dan mudah sekali dijumpai, di rumah, di gedung, bahkan pada alat komunikasi yang digunakan. Salah satu antena yang sering digunakan adalah antena televisi. Antena televisi yang sering digunakan adalah Yagi-Uda yang biasanya dipakai sebagai outdoor antena dan antena dipole yang biasanya digunakan untuk indoor antena. Masing – masing jenis antena memiliki kriteria dan keuntungan berdasarkan dari kebutuhan penggunaannya. Baik antena dipole maupun antena Yagi-Uda memiliki perbedaan diantaranya adalah besar bandwidth, nilai gain, dan pola radiasi. Pada paper ini dapat diketahui bahwa bandwidth yang dimiliki antena yagi-uda lebih besar daripada antena dipole yakni 0.39943 MHz untuk antena yagi-uda dan 0.16569 MHz untuk antena dipole. Begitupula dengan besar Gain yang dimiliki antena Yagi-Uda (6.64 dBi) lebih besar dibandingkan dengan gain dari antena dipole (2.29 dBi). Perbedaan ini dikarenakan faktor elemen director dan ketebalannya.</strong></p><p><strong><br /></strong></p><p><strong><em>Kata Kunci</em></strong> – <em>Atena Televisi, Atena Yagi-Uda, Atena Dipole, Gain, Bandwidth</em></p><p><em> </em></p><p><em>Abstract</em> <strong>- Antenna is a transmitter tool that is familiar with daily activity and easy to find at home, in the building, even on the communication tool used. One of antenna that is often used is a television antenna. Television antennas are often used is Yagi-Uda which is usually used as an outdoor antenna and dipole antenna that is usually used for indoor antennas. Each type of antenna has the criteria and advantages based on the needs of its use. Both dipole antennas and Yagi-Uda antennas have differences among them are bandwidth, gain, and radiation pattern. In this paper it can be seen that the bandwidth of yagi-uda antenna is bigger than dipole antenna that is 0.39943 MHz for Yagi-Uda antenna and 0.16569 MHz for dipole antenna. Neither the large Gain of the Yagi-Uda antenna (6.64 dBi) is greater than the gain of the dipole antenna (2.29 dBi). This difference is due to element factor of director and its thickness.</strong></p><p><strong><br /></strong></p><p><strong><em>Keywords</em></strong><strong> – </strong><em>Television Antenna, Yagi-Uda Antenna, Dipole Antenna, Gain, Bandwidth</em><strong> </strong></p>


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2516
Author(s):  
Bashar Bahaa Qas Elias ◽  
Ping Jack Soh ◽  
Azremi Abdullah Al-Hadi ◽  
Prayoot Akkaraekthalin ◽  
Guy A. E. Vandenbosch

This work presents the design and optimization of an antenna with defected ground structure (DGS) using characteristic mode analysis (CMA) to enhance bandwidth. This DGS is integrated with a rectangular patch with circular meandered rings (RPCMR) in a wearable format fully using textiles for wireless body area network (WBAN) application. For this integration process, both CMA and the method of moments (MoM) were applied using the same electromagnetic simulation software. This work characterizes and estimates the final shape and dimensions of the DGS using the CMA method, aimed at enhancing antenna bandwidth. The optimization of the dimensions and shape of the DGS is simplified, as the influence of the substrates and excitation is first excluded. This optimizes the required time and resources in the design process, in contrast to the conventional optimization approaches made using full wave “trial and error” simulations on a complete antenna structure. To validate the performance of the antenna on the body, the specific absorption rate is studied. Simulated and measured results indicate that the proposed antenna meets the requirements of wideband on-body operation.


Sign in / Sign up

Export Citation Format

Share Document