Perbandingan Desain Antena Dipole dan Yagi-Uda Menggunakan Material Aluminium pada Frekuensi 470 – 890 MHz

2017 ◽  
Vol 3 (3) ◽  
pp. 140
Author(s):  
Suci Rahmatia ◽  
Putri Wulandari ◽  
Nurul Khadiko ◽  
Fitria Gani Sulistya

<p><em>Abstrak </em><strong> - Antena merupakan alat pemancar yang akrab dengan aktifitas sehari-hari dan mudah sekali dijumpai, di rumah, di gedung, bahkan pada alat komunikasi yang digunakan. Salah satu antena yang sering digunakan adalah antena televisi. Antena televisi yang sering digunakan adalah Yagi-Uda yang biasanya dipakai sebagai outdoor antena dan antena dipole yang biasanya digunakan untuk indoor antena. Masing – masing jenis antena memiliki kriteria dan keuntungan berdasarkan dari kebutuhan penggunaannya. Baik antena dipole maupun antena Yagi-Uda memiliki perbedaan diantaranya adalah besar bandwidth, nilai gain, dan pola radiasi. Pada paper ini dapat diketahui bahwa bandwidth yang dimiliki antena yagi-uda lebih besar daripada antena dipole yakni 0.39943 MHz untuk antena yagi-uda dan 0.16569 MHz untuk antena dipole. Begitupula dengan besar Gain yang dimiliki antena Yagi-Uda (6.64 dBi) lebih besar dibandingkan dengan gain dari antena dipole (2.29 dBi). Perbedaan ini dikarenakan faktor elemen director dan ketebalannya.</strong></p><p><strong><br /></strong></p><p><strong><em>Kata Kunci</em></strong> – <em>Atena Televisi, Atena Yagi-Uda, Atena Dipole, Gain, Bandwidth</em></p><p><em> </em></p><p><em>Abstract</em> <strong>- Antenna is a transmitter tool that is familiar with daily activity and easy to find at home, in the building, even on the communication tool used. One of antenna that is often used is a television antenna. Television antennas are often used is Yagi-Uda which is usually used as an outdoor antenna and dipole antenna that is usually used for indoor antennas. Each type of antenna has the criteria and advantages based on the needs of its use. Both dipole antennas and Yagi-Uda antennas have differences among them are bandwidth, gain, and radiation pattern. In this paper it can be seen that the bandwidth of yagi-uda antenna is bigger than dipole antenna that is 0.39943 MHz for Yagi-Uda antenna and 0.16569 MHz for dipole antenna. Neither the large Gain of the Yagi-Uda antenna (6.64 dBi) is greater than the gain of the dipole antenna (2.29 dBi). This difference is due to element factor of director and its thickness.</strong></p><p><strong><br /></strong></p><p><strong><em>Keywords</em></strong><strong> – </strong><em>Television Antenna, Yagi-Uda Antenna, Dipole Antenna, Gain, Bandwidth</em><strong> </strong></p>

2015 ◽  
Vol 781 ◽  
pp. 69-72
Author(s):  
Benjawan Apatsaraphom ◽  
Wanwisa Thaiwirot ◽  
Prayoot Akkaraekthalin

This paper presents the comparative study of printed dipole antenna with step-shaped feed gap for DTV applications. By proper adjusting the length of arm strips, the additional resonant mode is excited close to the fundamental resonant mode which can form wide operating band. With the equal length of the strip arms of dipole antennas but different step-shaped feed gap (single, double and triple step-shaped feed gap), the single and double step-shaped feed gap can cover the 470-806 MHz band for DTV reception. The dipole antenna with triple step-shaped feed gap can cover the 470-862 MHz band. The simulated and measured results such as return loss, VSWR, radiation pattern and gain for proposed antenna are investigated.


2021 ◽  
pp. 004051752110134
Author(s):  
Daniel Agu ◽  
Rachel J Eike ◽  
Allyson Cliett ◽  
Dawn Michaelson ◽  
Rinn Cloud ◽  
...  

E-textile antennas have the potential to be the premier on-body wearable sensor. Embroidery techniques, which can be applied to produce e-textile antennas, assist in large production volumes and fast production speeds. This paper focuses on the effects of three commonly used embroidery parameters, namely stitch type, conductive thread location, and stabilizer, on the performance of embroidered dipole antennas in order to determine the ideal embroidery combination for optimal antenna performance. Fifty-four dipole antenna samples were fabricated and measured at the industrial, scientific, and medical (ISM) frequency band of 2.45 GHz. The results of this study show that machine-embroidered antenna designs with satin stitches resonate at a lower frequency and exhibit a lower transmission gain compared with those made with contour stiches, and the conductive thread location in the bobbin location plus the use of a water-soluble stabilizer can help improve impedance matching.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Imen Ben Trad ◽  
Jean Marie Floc’h ◽  
Hatem Rmili ◽  
M’hamed Drissi ◽  
Fethi Choubani

A planar printed dipole antenna with reflectors and directors, able to steer its radiation pattern in different directions, is proposed for telecommunication applications. Starting from a dual-beam printed dipole antenna achieved by combining two elementary dipoles back to back, and by loading four PIN diodes, three modes of reconfigurable radiation patterns are achieved at the frequency 2.56 GHz thanks to switches states. A prototype of the structure was realized and characterized; an efficiency of 75% is obtained. Simulation and measured results of the results are presented and discussed.


1991 ◽  
Vol 3 (12) ◽  
pp. 1115-1116 ◽  
Author(s):  
Y. Kito ◽  
H. Kuwatsuka ◽  
T. Kumai ◽  
M. Makiuchi ◽  
T. Uchida ◽  
...  

2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Sahar Chagharvand ◽  
M. R. B. Hamid ◽  
M. R. Kamarudin ◽  
Mohsen Khalily

This paper presents a single layer planar slot antenna for dual band operation. The antenna is fed by a coplanar waveguide (CPW) with two inverted C-shaped resonators to achieve the dual band operation. The impedance bandwidth for ǀS11ǀ < -10dB is 14% in lower band and 7% in higher band. The antenna prototype’s electromagnetic performance, impedance bandwidth, radiation pattern, and antenna gain were measured. The proposed configuration offers a relatively compact, easy to fabricate and dual band performance providing gain between 2 and 4 dBi. The designed antenna has good dual bandwidth covering 3.5 WiMAX and 5.8 WLAN tasks. Experimental and numerical results also showed good agreement after comparison.


Journal ICTEE ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 20
Author(s):  
Tri Sakti ◽  
Imam Suharjo

AbstrakTechnological advances today are very developed, so it can help the community in monitoring home security. One example is offices or houses owned by themselves. In this research I am interested in doing research and development in the field of IoT where this research aims to build a system that can help homeowners to provide security at the door of the house during remote travel. With fingerprint system equipped with door monitoring using botTelegram this system itself is implemented with the concept of internet of things (IoT). In this study using the concept of internet of things implemented in the automatic door system using microcontroller that serves as a prototype regulator so that the prototype can run properly. In this system has an interface in the form of Telegram-based applications by utilizing BotTelegram that serves as a communication tool between users and the system. In this system, users can monitor the security of the door when traveling or at home. Based on the results of the study, it can be concluded that the system can run with a percentage of 85% where the system can open automatic doors with fingerprint configuration data that has been registered in the fingerprint module. Keywords: Internet of things, fingerprints, telegram bots, nodemcu, Door Security


2012 ◽  
Vol 2012 (1) ◽  
pp. 001078-001080
Author(s):  
Deepukumar Nair ◽  
Glenn Oliver ◽  
Jim Parisi

Organic coverlays are required to protect microstrip circuits in most applications. The presence of coverlay can potentially influence the performance of microstrip antennas. This paper describes the qualification of polyimide based coverlays for microstrip antennas both in 900 MHz and 2.50 GHz frequency bands. An Inverted F-shaped antenna fabricated on FR-4 dielectric is used as the test vehicle and two different coverlay materials are tested with respect to key parameters like resonant frequency, S11 bandwidth, antenna gain, frequency detuning, and radiation pattern. The data presented in this paper clearly indicates polyimide materials are well suited to cover microstrip antenna circuits with minimal impact on performance.


Sign in / Sign up

Export Citation Format

Share Document